DUNE Near Detectors

Hongyue Duyang University of South Carolina On Behalf of the DUNE Collaboration

NUFACT 2016, 08/26/2016 Quy Nhon, Vietnam

Overview

- DUNE Near detector roles.
- Near detector options under study.
- Near detector constraint on oscillation systematics.
- Physics in the near detector itself.

Near Detectors for DUNE

- DUNE is a long-baseline neutrino experiment aiming to solve mass hierarchy and CP-violation by measuring v_{μ} to v_{e}/\bar{v}_{μ} to \bar{v}_{e} oscillation in one single experiment.
- A capable near detector is crucial for DUNE to fulfill its scientific goal.

Near Detector Roles

- Constrain the systematics for oscillation measurement.
 - Measure spectra of all four species of neutrinos: v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e}
 - Measure the absolute and relative flux: $FD/ND(E_v)$
 - Constrain & Model nuclear effects: v/\bar{v} -Ar
 - Quantify differences between neutrino and antineutrino: energy scale, event topology, cross-section, etc.
 - Constrain Background: $\pi^0/\pi^+/\pi^-/etc$.
- Precision measurement for neutrino interaction:
 - Cross sections: Inclusive and exclusive.
 - Electroweak and isospin physics
- Search for new Physics: sterile neutrinos, light Dark Matter candidates, etc.

Near Detector Options

- Currently we have 3 ND options under study:
 - Fine-Grained Tracker (CDR reference design)
 - LAr TPC (ArgonCube)
 - High-Pressure Ar Gas TPC

Near Detector Options

- Currently we have 3 ND options under study:
 - Fine-Grained Tracker (CDR reference design)
 - LAr TPC (ArgonCube)
 - High-Pressure Ar Gas TPC

(the focus of this talk)

Straw Tube Tracker (Argon target)

Near Detector Options

- Currently we have 3 ND options under study:
 - Fine-Grained Tracker (CDR reference design)
 - LAr TPC (ArgonCube) -
 - High-Pressure Ar Gas TPC

Straw Tube Tracker (Argon target)

Radiator (Target) Mass	7 tons	
Other Nuclear Target Mass	1–2 tons	
Vertex Resolution	0.1 mm	
Angular Resolution	2 mrad	
C. Decelution	$6\%/\sqrt{E}$	
E _e Resolution	(4% at 3 GeV)	
E_{μ} Resolution	3.5%	
$\overline{\nu}_{\mu}/\overline{\nu}_{\mu}$ ID	Yes	
$\nu_e/\bar{\nu}_e$ ID	Yes	
π^- .vs. π^+ ID	Yes	
π^+ .vs. proton .vs. ${\it K}^+$	Yes	
${ m NC}\pi^0/{ m CC}$ e Rejection	0.1%	
${\sf NC}\gamma/{\sf CC}$ e Rejection	0.2%	
$CC\mu/CCe$ Rejection	0.01%	

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ ~0.1 g/cm³, X₀~6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.

- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

Radiator (Target) Mass	7 tons		
Other Nuclear Target Mass	1–2 tons		
Vertex Resolution	0.1 mm		
Angular Resolution	2 mrad		
E Pacalution	$6\%/\sqrt{E}$		
E _e Resolution	(4% at 3 GeV)		
E_{μ} Resolution	3.5%		
$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes		
$\nu_e/\bar{\nu}_e$ ID	Yes		
π^- .vs. π^+ ID	Yes		
π^+ .vs. proton .vs. ${\it K}^+$	Yes		
$NC\pi^0/CCe$ Rejection	0.1%		
${\sf NC}\gamma/{\sf CC}$ e Rejection	0.2%		
$CC\mu/CC$ e Rejection	0.01%		

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ ~0.1 g/cm³, X₀~6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.
 - 4π MuID (RPC) in dipole and up/downstream.
 - Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

Low-density good for tracking leptons and hadrons.

Radiator (Target) Mass	7 tons	
Other Nuclear Target Mass	1–2 tons	
Vertex Resolution	0.1 mm	
Angular Resolution	2 mrad	
E Decolution	$6\%/\sqrt{E}$	
E_e Resolution	(4% at 3 GeV)	
E_{μ} Resolution	3.5%	
$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes	
$\nu_e/\bar{\nu}_e$ ID	Yes	
π^- .vs. π^+ ID	Yes	
π^+ .vs. proton .vs. ${\it K}^+$	Yes	
$NC\pi^0/CCe$ Rejection	0.1%	
${\sf NC}\gamma/{\sf CC}$ e Rejection	0.2%	
$CC\mu/CCe$ Rejection	0.01%	

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ ~0.1 g/cm³, X₀~6m).
 - Dipole magnetic field (B = 0.4 T). Measure charge: $v vs \bar{v}$
 - 4π ECAL coverage.
 - 4π MuID (RPC) in dipole and up/downstream.
 - Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

Radiator (Target) Mass	7 tons		
Other Nuclear Target Mass	1–2 tons		
Vertex Resolution	0.1 mm		
Angular Resolution	2 mrad		
E Decolution	$6\%/\sqrt{E}$		
E _e Resolution	(4% at 3 GeV)		
E_{μ} Resolution	3.5%		
$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes		
$\nu_e/\bar{\nu}_e$ ID	Yes		
π^- .vs. π^+ ID	Yes		
π^+ .vs. proton .vs. ${\it K}^+$	Yes		
$NC\pi^0/CCe$ Rejection	0.1%		
${\sf NC}\gamma/{\sf CC}$ e Rejection	0.2%		
$CC\mu/CC$ e Rejection	0.01%		

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ ~0.1 g/cm³, X₀~6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.

Full phase space measurement

- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

Radiator (Target) Mass	7 tons		
Other Nuclear Target Mass	1–2 tons		
Vertex Resolution	0.1 mm		
Angular Resolution	2 mrad		
E Posolution	$6\%/\sqrt{E}$		
Le Resolution	(4% at 3 GeV)		
E_{μ} Resolution	3.5%		
$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes		
$\nu_e/\bar{\nu}_e$ ID	Yes		
π^- .vs. π^+ ID	Yes		
π^+ .vs. proton .vs. ${\it K}^+$	Yes		
$NC\pi^0/CCe$ Rejection	0.1%		
${\sf NC}\gamma/{\sf CC}$ e Rejection	0.2%		
$CC\mu/CCe$ Rejection	0.01%		

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ ~0.1 g/cm³, X₀~6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.
 - 4π MuID (RPC) in dipole and up/downstream.

Nuclear effect study

• Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

Fine-Grained Tracker (FG)

ECAL Muon Detector	Radiator Other N High Resolution tons	
	Vertex Resolution	0.1 mm
	Angular Resolution	2 mrad
	E_e Resolution	$ \begin{array}{c c} 6\%/\sqrt{E} \\ (4\% \text{ at 3 GeV}) \end{array} $
	E_{μ} Resolution	3.5%
	$ u_{\mu}/ar{ u}_{\mu} $ ID	Yes
	$\nu_e/\bar{\nu}_e$ ID	Yes
	π^- .vs. π^+ ID	Yes
	π^+ .vs. proton .vs. k	K ⁺ Yes
	NC π^0 /CCe Rejection	0.1%
	NC γ /CCe Rejection	0.2%
	$CC\mu/CCe$ Rejection	0.01%

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ ~0.1 g/cm³, X₀~6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.

- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

Fine-Grained Tracker FG

ECAL Dipole B	Radiator (Target) Mass Other Nuclear Target Mass Vertex Resolution Angular Resolution	7 tons 1–2 tons 0.1 mm 2 mrad
	$\frac{E_{\epsilon}}{E_{\mu}}$ Particle Identification ')	
	$ \begin{array}{c c} \nu_{\mu}/\bar{\nu}_{\mu} \text{ ID} \\ \nu_{e}/\bar{\nu}_{e} \text{ ID} \\ \pi^{-} \text{ .vs. } \pi^{+} \text{ ID} \\ \pi^{+} \text{ .vs. } \text{ proton .vs. } K^{+} \end{array} $	Yes Yes Yes Yes
	${ m NC}\pi^0/{ m CCe}$ Rejection ${ m NC}\gamma/{ m CCe}$ Rejection ${ m CC}\mu/{ m CCe}$ Rejection	0.1% 0.2% 0.01%

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ≃0.1 g/cm³, X0≃6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.

- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

Fine-Grained Tracker FG

Muon Detector	Radiator (Target) Mass	7 tons
	Other Nuclear Target Mass	1–2 tons
ECAL Dipole B	Vertex Resolution	0.1 mm
	Angular Resolution	2 mrad
	E_e Resolution	$6\%/\sqrt{E}$ (4% at 3 GeV)
	E_{μ} Resolution	3.5%
	$\nu_{\mu}/\bar{\nu}_{\mu}$ ID	Yes
	$\nu_e/\bar{\nu}_A$ ID	Yes
	π_{π} Background R	ejection
	$NC\pi^0/CCe$ Rejection	0.1%
	$NC\gamma/CCe$ Rejection	0.2%
	$CC\mu/CCe$ Rejection	0.01%

Straw Tube Tracker (Argon target)

- ~3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ≃0.1 g/cm³, X0≃6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.

- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

 Pressurized Ar gas and solid Ca target provide detailed understanding of the FD A = 40 target

LArTPC ArgonCube

- Similar LAr TPC as the DUNE FD, same target.
- Novel implementation of LAR TPC technology
 - Modularity and scalability
 - Pixelized charge readout: high rate capability.
 - Can be magnetized : compatible with 0.4 T field

• A central large time projection chamber with about 1 tonne of argon pressurized at 10 bar.

DETEXTORESSURE Wessel that houses the TPC.

The GArTPC ND consists of the following element of lead and element of layers of lead and

- A dipole mather that with the entire detector establishing a uniform magnetic field (perpendicular to the neutrino beam) of 0.4 T.
- A cent a breach tracking hap be formance about 1 tonne of argon pressurised at 10 bar. The TI and the solution of thresholds, excellent tracking performance (point resolution below 1 mm and two-track separation better than 15 mm), high-resolution momentum measurement (<5% for 1 GeV UPS tracks) and particle ID capabilities using the dE/dx.
- A pressure vessel that houses the TPC. To minimise the inactive mass in the detector, the vessel will be manufactured with either light alloys (e.g. titanium or aluminium) or composite materials.
- An electromagnetic sampling calorimeter made of layers of lead and plastic scintillator that surrounds the TPC detecting the neutral

Status

- A ND optimization task force formed.
- **GEANT4 simulation** of all 3 detector options complete.
- **Reconstruction** work in progress.
- Need detector uncertainties.
- The VALOR framework is used to study ND constraints on oscillation analysis.

Near Detector Roles

- Constrain the systematics for oscillation measurement.
 - Measure spectra of all four species of neutrinos: v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e}
 - Measure the absolute and relative flux: FD/ND(Ev)
 - Constrain & Model nuclear effects: v/\bar{v} -Ar
 - Quantify differences between neutrino and antineutrino: energy scale, event topology, cross-section, etc.
 - Constrain Background: $\pi^0/\pi^+/\pi^-/etc$.

Dracision massurament for neutrino interaction

In the following slides I am going to take FGT the reference design as an example to show the ND constraint on oscillation systematics and cross-section measurement.

candidates, etc.

FGT Study Strategy

Fast MC to do quick study of detector performance.

•

•

•

- Full **GEANT4 simulation** complete.
 - Based upon ART framework.
 - Working on reconstruction.
- NOMAD data to benchmark the ideas.
 - FGT concept is built upon the NOMAD detector, with better resolution, granularity, 4π Ecal & µID coverage & ~x100 higher statistics.

2.7 ton, low average density (0.1 g/cm^3).

A ν_μ ở c Cand Gan didate (IAD

In FGT, ~x10 higher resolution

LBNE Collaboration meeting

Hadrons are tracks.

Deadwood SD, October 5, 2009

Muon is kinematically separated from hadron vectors.

Roberto Petti

South Carolina Group

A $\bar{\nu}_e$ CC candidate in NOMAD ve-CC Candidate

Deadwood SD, October 5, 2009

Electrons are also tracks in FGT: high precision measurement: South Carolina Group

- Universality equivalence with muon from v_{μ} .
- Dipole magnetic field allows distinguish e+ from e-:
 - Measure $\bar{\nu}_e$ content of the beam. •

e+/e- Measurement

Electron Momentum:

- **Curvature** in B field for momentum and charge (+/-) measurement.
- Track fit extrapolate to the vertex for direction measurement.
- ECAL for more precise energy measurement
- Momentum resolution ~ 3.5% (at ~3 GeV), from STT curvature + ECAL.

e+/e- Measurement

Electron Momentum:

- Curvature in B field for momentum and charge (+/-) measurement.
- Track fit extrapolate to the vertex for direction measurement.
- *iscriminant* **ECAL** for more precise energy measurement
 - Momentum resolution ~ 3.5% (at ~3 GeV), from STT curvature + ECAL.

Electron ID:

Transition radiation (TR) measurement in STT

05

Energy deposition pattern (dE/dx) in the ECAL.

π^0 Reconstruction

- π^0 s are background to v_e/\bar{v}_e appearance.
- FGT sees clean π^0 signatures:
 - 50% of the γ convert in STT, away from th
- We can also use electrons γ-conversion to ca measurement and identification.

Pure leptonic processes: small but very well known cross-sections.

- Assuming 1.2 MW beam power, 5 tons ND fiducial mass, 5 years neutrino running we expect:
 - ~7.8k ν_{μ} + e⁻ $\rightarrow \frac{d\varphi(\nu_{\ell}e \mp \ell_{\ell}e)}{\mu} = \frac{\varphi(\nu_{\ell}e \mp \ell_{\ell}e)}{\pi} = \frac{\varphi(\nu_{\ell}e \mp \ell_{\ell}e)$

• ~4k
$$\nu_{\mu}$$
 + e⁻ $\rightarrow \nu_{e} \stackrel{\text{def}(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{2})}{=} 5\%$

Relative Flux Measurement

• Low-v method: at low v, the number of events in a given energy bin is proportional to the neutrino flux.

$N(E)_{\nu < 1} = k\Phi(E)f_c(\frac{\nu}{E_{\nu}})$

- {Pominant uncertainty is much energy scale and resolution.
- Use ND low-v data to constrain beam hadron productions.
- Expect an FD/ND ratio at 1~2% precision in 0.5~50 GeV

Nuclear Effect on Energy Scale

- Neutrino energy scale are sensitive to nuclear effect, which can be • different between neutrino and antineutrino.
- FGT measures both lepton and hadron moment ums: calculate missing pt to constrain nuclear effect. *ector Measurement meter* • CONCEPT Missing-PT an invaluable constrainteon the EGMDeconsists of the
- **Coherent-** π topology is identical between neutrinoeandents: • antineutrino, with little nuclear effect adron Momentum Vector of pole Missner that surround
- Additional constraint from QE and Resonance interaction USC the neutrino •

- A central large time projection about 1 tonne of argon pressur The TPC offers low energy det θ_{v} thresholds, excellent tracking p (point resolution below 1 mm separation better than 15 mm) momentum measurement (<5% tracks) and particle ID capabil Out Et/plane
- "h"->A pressure vessel that houses t minimise the inactive mass in Missing-PT vector helpsvessel will be manufactured wi alloys (e.g. titanium or alumin composite materials.

Quasi-Elastic

- QE is an important channel in DUNE oscillation measurement.
 - 2-track or 1-track topology.
- Constrain nuclear effect by comparing E_ν calculated from muon momentum with total visible energy.

$$E_{\nu}^{\text{calc}} = \frac{2(M_n - E_B)E_{\mu} - (E_B^2 - 2M_nE_B + m_{\mu}^2 + \delta M^2)}{2[(M_n - E_B) - E_{\mu} + p_{\mu}\cos\theta_{\mu}]}$$

 Sensitivity study using fast MC shows signal efficiency ~48%, purity ~76%.

Fig. 7 (right) shows the efficiency and purity of reconstructing CCQE signal events as a function of E_V if the efficiency (purity) is 333% (77%) when placing a cut at 0.35 on the multivariate distributed in the multivariate distributed in the multivariate distributed in the second efficiency (purity) is 333% (77%) when placing a cut at 0.35 on the multivariate distributed in the multivariate distributed in the second efficiency (purity) is 333% (77%). Fig. 8 (left) shows the expected precision of crees cors sectore obtained in three track analysis in blue does Sargamelle [12], SKAT measurements [13,14] and the prediction from GENIE. The similar technique applied i rack CCQE can also be used in three track CCRes to constrain the Fermi-motion The incident neutrino energy (an be derived by using the energy and angle of the muon, $(E_{\mu}$ and θ_{μ}), and compare it with the total visible e of the two tracks of a neindependent handle, the dependent of the dependence of the dependence of the state of the dependence of the depen her Fermi-metale of the hand the hand pile for the former of the ball of the second se

$$E_{\mathcal{V}} = \frac{m_{\mu}^{2} m_{\pi}^{2} m_{\pi}^{2} 2 \mathcal{M}_{\mathcal{W}} \mathcal{L}_{\mathcal{U}} \mathcal{L}_{\mathcal$$

where $E_{\mu} = \mathcal{F}_{\mu} = \mathcal{F}_{\mu}$ is the total music defees the \mathcal{M}_{μ} , \mathcal{M}_{μ} , \mathcal{M}_{μ} , \mathcal{M}_{μ} and \mathcal{M}_{μ} and \mathcal{M}_{μ} . his distribution ^dfling in the neutrino event generator [15].

Precision Measurements

- The DUNE Near Detector complex offers a generational advance in neutrino precision measurement program.
- Key ingredients are:
 - Very high resolution detectors capable of measuring absolute flux and quantifying nuclear effects,
 - High statistics.
- Examples:
 - Measurement of Adler sum-rule
 - Weak mixing angle in v-e and v-Quark scattering
 - Differential cross-section measurements of exclusive & inclusive processes with ~O(3%) precision
 - Isospin physics

Search for New Physics

- The ability to identify/reconstruct :
 - (1) Leptons e+, e⁻, μ +, μ ⁻ with high resolution
 - (2) Hadrons π^0 , π^- , π^+ , p, K⁰s, Λ , etc. with high eff/purity
- Examples include search for :
 - High Δm^2 o(>0.5 eV²) oscillation
 - Neutral heavy leptons
 - light dark-matter particles
- Rich physics with overall >100 topics

Summary

- A capable near detector is crucial to DUNE to reach its scientific goal of determine mass hierarchy and CP-violation
- 3 ND options under study:
 - Fine-Grained Tracker (reference design)
 - Liquid Argon TPC, e.g. ArgonCube
 - High-Pressure Ar Gas TPC
- Clear plan of using ND to constrain systematic uncertainties for oscillation measurement:
 - Determine all four species of neutrino source: v_{μ} , \bar{v}_{μ} , v_{e} , \bar{v}_{e} ,
 - Measure absolute and relative flux.
 - Measure backgrounds
 - Constrain nuclear effect.
 - A lot of work in progress.
- The near detector also has rich neutrino interaction physics and other physics topics by itself.

Back Up Slides

Relative Flux Measurement: Low-nu Method

S.R.Mishra, World Sci (1990):

Cross-section of hadron production using structure functions $(2xF_1, F_2, xF_3)$:

$$\frac{d\sigma^{\nu(\bar{\nu})}}{dxdy} = \frac{G_F^2 M E}{\pi} \times \left[\left(1 - y - \frac{M x y}{2E} \right) F_2^{\nu(\bar{\nu})} + \frac{y^2}{2} 2 x F_1^{\nu(\bar{\nu})} \pm y \left(1 - \frac{y}{2} \right) x F_3^{\nu(\bar{\nu})} \right]$$

Integrating over x:

$$\frac{d\sigma}{d\nu} = A\left(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2}\right) \qquad A = \frac{G_F^2M}{\pi}\int F_2(x)dx$$
$$B = -\frac{G_F^2M}{\pi}\int (F_2(x) \mp xF_3(x))$$
$$C = B - \frac{G_F^2M}{\pi}\int F_2(x)R_{TERM}dx$$
$$N(E)_{(\nu \le 1)} = \Phi(E) \cdot A\int_0^1 \left(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2}\right)d\nu$$

At low- ν , the number of events in a given energy bin is proportional to the neutrino flux: $N(E)_{\nu < 1} = k\Phi(E)f_c(\frac{\nu}{E_{\mu}})$

- A central large time projection chamber with about 1 tonne of argon pressurized at 10 bar.
- A pressure vessel that houses the TPC.

The Antelectromagneticg sampling calorimeter made of layers of lead and elements: Olastic scintillator. • A dipole magnet that surrounds the entire BARREL ECAL SOLLENOID

Quasi-elastic ν_{μ} CC candidate in NOMAD

Resonance in FGT

Search for New Physics

- The ability to identify/reconstruct :
 - (1) Leptons e^+ , e^- , μ^+ , μ^- with high resolution
 - (2) Hadrons π^0 , π^- , π^+ , p, κ^0 s, Λ , etc. with high eff/purity

 \Rightarrow sensitive search for new physics

- Examples include search for :
 - High Δm^2 o(>0.5 eV²)scillation
 - Neutral heavy leptons
 - light dark-matter particles
- Rich physics with overall >100 topics

FGT vs NOMAD

	Sub-Detector	NOMAD	FGT	Improvement
	Tracking		×6 more hits in X-Y ×2 more hits along Z	imes 2 higher QE-Proton Eff. e^{\pm} down to 80 MeV γ -Conv. Reconstruction
n	TR: Electron-ID	Downstream	Continuous	$\simeq imes 3 \; e^{\pm} ext{-Eff}$
d	Calorimetry Segmentation	Downstream No Longitudinal Transverse	4π Coverage Fine Longitudinal Finer Transverse	Much better converage e^{\pm}/π Separation Better miss- P_T Powerful 'Dirt'-Veto
	μ -ID	$3\%/\sqrt{E}$ Downstream $P_{\mu} \geq 2.5~{ m GeV}$	$6\%/\sqrt{E}$ 4π Coverage	Poorer resolution P_{μ} down to 0.3 GeV
	Trigger	Downstream No Cal.Trigger	Continuous in STT Calorimetric Trigger	$P~{ m down}~{ m to}~0.1~{ m GeV}$ $E\simeq 0.3~{ m GeV}$

Improvement in resolution, granularity and 4π coverage

Status

- A ND optimization task force formed.
- **GEANT4 simulation** of all 3 detector options complete.
- Reconstruction work in progress.
- Need detector and beam uncertainties.
- The VALOR framework is used to study ND constraints on oscillation analysis.

