

Kaon Experiments at CERN Recent Results and Prospects

Giuseppina Anzivino University of Perugia and INFN on behalf of the NA62 and NA48/2 Collaborations

NuFact 2016 ICISE, Quy Nhon, August 21-27, 2016 Outline

- → The Kaon Factory at CERN
- → NA48/n & NA62: brief history
- → Tests of SM and search for New Physics
 - \rightarrow Measurement of R_K
 - → Lepton Flavour / Number Violation studies
 - → Search for two-body resonances
 - → Search for Heavy Neutrino production
- → The K⁺ → $\pi^+ \nu \overline{\nu}$ decay
 - → Motivation and strategy of the measurement
 - → Performance during the 2015 run
 - → Status and future prospects
- → Summary and Outlook

The Kaon Factory at CERN

- → Precision measurements in the minimal flavour laboratory
- → Many Kaon decays can proceed, or are enhanced, by contributions from new physics particles
 - ✓ study explicit Violations of SM, such as LFV/LNV
 - ✓ probe the flavour sector by means of FCNC
 - ✓ test of fundamental symmetries such as CP and CPT
 - study of strong interaction at low energy in exclusive processes

Ideal environment to search for New Physics

→ The CERN Kaon physics programme

- → The main goal of the NA62 experiment is the measurement of the Branching Ratio of the K⁺ → $\pi^+ v \overline{v}$ decay
- → Many other physics opportunities

Kaons at CERN

NA48 <u>Main goal</u> : Search for direct CPV Measurement of $\varepsilon' / \varepsilon$ Beams: K _L / K _c	1997 2001	NA31 (1984-1990) <u>First evidence of</u> direct CPV <u>Beams</u> : K _L / K _S
NA48/1 <u>Main goal</u> : Rare K _S decays and	2002	NA62
hyperon decays, CPV tests <u>Beams</u> : K _S	2003 2004	NA62 - R _K <u>Main goal</u> : Test of μ-e
NA48/2 Main goal: Search for direct CPV	2007 2008	universality <u>R_K measurement</u> <u>Beams</u> : K ⁺ / K ⁻
Charge asymmetry measurement <u>Beams</u> : K ⁺ / K ⁻	2014	NA62 <u>Main goal</u> : Rare kaon decays,
NA48	2018	Beam: K ⁺

The NA48 and NA62 experiments

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Moscow(INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, SLAC, Sofia, TRIUMF, Turin, Vancouver(UBC) ~ 200 participants

R_K - Detector and data taking

Main detector components:

- Magnetic spectrometer (4 DCHs):
- 4 views: redundancy \Rightarrow efficiency

$$\sigma(p)/p = 1.02\% + 0.044\% p [GeV/c] (2003)$$

 $\sigma(p)/p = 0.48\% + 0.009\% p [GeV/c] (2007)$

- Hodoscope: fast trigger and precise time measurement (150ps)
- Liquid Krypton e.m. calorimeter: High granularity, quasi-homogeneous

 $\sigma(E)/E = 3.2\%/\sqrt{E} + 9\%/E + 0.42\%$ [GeV]

Hadron calorimeter, photon vetos, muon veto counters

	2003-2004	2007
Kaon momentum	$60 \pm 3 \text{GeV/c}$	$74 \pm 1 \text{GeV/c}$
Momentum kick	120 MeV/c	265 MeV/c

Same detector for NA48/2 and NA62

R_K in the SM

Leptonic decays of light pseudoscalar mesons not directly usable due to hadronic uncertainties

- hadronic uncertainties cancel
- \triangleright R_K very well predicted within the SM, well below 10⁻³
- K_{e2} strongly helicity suppressed (V-A coupling)

enhanced sensitivity to non-SM effects

[V. Cirigliano and I. Rosell, Phys. Rev. Lett. (2007) 231801]

s

ĸ⁺

$$R_{K} = \frac{\Gamma(K^{\pm} \to e^{\pm} v_{e})}{\Gamma(K^{\pm} \to \mu^{\pm} v_{\mu})} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \left(1 + \delta R_{QED}\right) = (2.477 \pm 0.001) \cdot 10^{-5}$$

helicity suppression ~10⁻⁵ radiative corrections radiative corrections R_{QED} (few %) due to the IB part of the radiative decay $K^{\pm} \rightarrow e^{\pm}\nu\gamma$ are included in R_{K} definition and well computed in the SM

e;μ

w⁺

 R_{κ} beyond the SM

In several SM extensions, the presence of LFV terms introduces extra contribution to the SM amplitude, enhancing the decay rate 2HDM – tree level $K^{\pm} \rightarrow l^{\pm}v$ can proceed via charged Higgs, H^{\pm} , exchange \rightarrow does not affect R_{K} <u>2HDM – one-loop level</u> Dominant contribution to R_{K} : H[±] mediated LFV with emission of v_{τ} \rightarrow R_K enhancement can be experimentally accessible $R_{K}^{LFV} = \frac{\Gamma_{SM}(K \to ev_{e}) + \Gamma_{LFV}(K \to ev_{\tau})}{\Gamma_{SM}(K \to \mu v_{\mu})}$ [For [Fonseca, Romao and Teixeira, EPJC (2012) 2228] $R_{K}^{LFV} \approx R_{K}^{SM} \left| 1 + \left(\frac{m_{K}^{4}}{m_{T^{\pm}}^{4}} \right) \left(\frac{m_{\tau}^{2}}{m_{e}^{2}} \right) \left| \Delta_{13} \right|^{2} \tan^{6} \beta \right| \qquad \begin{bmatrix} \text{Masiero, Paradisi, Petronzio, PRD 74, 2006} \\ \text{[Lacker and Menzel, JHEP (2010) 006]} \\ \text{[Abada et al., JHEP 1302 (2013) 048]} \end{bmatrix}$

 R_{κ} final result

The $K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$ decay Search for LNV and 2-body resonances

Interest and motivation

Asaka-Shaposhnikov model (vMSM) [PLB 620 (2005) 17]

- → 3 sterile neutrinos, N_i, added in the SM to explain: dark matter and baryon asymmetry in the Universe
- → The lightest (N₁, mass O(keV)) is a dark matter candidate
- → $N_{2,3}$, mass $\mathcal{O}(100 \text{ MeV} \text{few GeV})$, responsible for neutrino mass and BAU
- → Active sterile neutrino mixing described by U matrix
- \rightarrow In K[±] decays, for m_{2,3} < m_K m_µ

 $K^{\pm} \to \mu^{\pm}N; \qquad N \to \pi^{\pm}\mu^{\mp} \qquad BR(K^{\pm} \to \mu^{\pm}N) \times BR(N \to \pi^{\pm}\mu^{\mp}) \sim \left|U_{\mu 4}\right|^{4}$ Shaposhnikov-Tkachev model [PLB 639 (2006) 414]

- vMSM + real scalar field (inflaton χ) with scale-invariant couplings to explain Universe homogeneity and isotropy
- → χ Higgs mixing (θ), χ unstable τ ~ 10⁻⁸ 10⁻¹² s
- → Production in Kaon decays for $m_{\chi} < 354 \text{ MeV}/c^2$

$$BR(K^{\pm} \to \pi^{\pm} \chi) = 1.3 \times 10^{-3} \left(\frac{2|\vec{p}_{\chi}|}{M_{K}} \right) \theta^{2}$$

LNV - Same Sign muon sample

LNC - Opposite Sign muon sample

Events in signal region: $N_{obs} = 3489$, Background: $(0.36 \pm 0.10)\%$ Improved selection wrt published NA48/2 measurement of BR and FF [PLB 697 (2011)107]

LNV and LNC resonance search

- > Peak search on $\pi\mu\mu$ candidates performed assuming different mass hypotheses
- For each mass hypothesis (M_{res}), observed events in data (N_{obs}) vs expected events from MC (N_{exp}) gives UL (signal) (Rolke-Lopez statistical treatment)
 LNV Majorana neutrinos in K[±]→ π[∓]μ[±]μ[±]
- ≥ 284 M_{res} tested, two possibility, closest invariant mass to M_{res} considered Search for resonances in K[±]→ π[±]μ⁺μ[−]
- ▶ Both invariant mass $M(\pi^{\pm}\mu^{\mp})$ and $M(\mu^{+}\mu^{-})$ are probed with 267, 280 hypoteses resp.

 $K^{\pm} \rightarrow \mu^{\pm} N_{4}$ with $N_{4} \rightarrow \pi^{\mp} \mu^{\pm}$

24-8-2016

 $K^{\pm} \rightarrow \mu^{\pm} N_4 \text{ with } N_4 \rightarrow \pi^{\pm} \mu^{\mp}$

24-8-2016

 $K^{\pm} \rightarrow \mu^{\pm} X \text{ with } X \rightarrow \mu^{+} \mu^{-}$

24-8-2016

Giuseppina Anzivino@NuFact 2016

Search for Heavy Neutrino production

HNL global limits

- > In contrast to decay searches, production searches are model independent
- Most stringent limits are set by Kaon experiments

Search for HNL production

Peak search for $K^+ \rightarrow \mu^+ N$ at NA62-R_K (2007 data)

- > 3 months of data taking, no downscaled trigger ~ 10^8 K+ decay in fiducial volume Peak search for K⁺ → μ^+ N at NA62 (2015 data)
- ➢ Integrated 2007 K⁺ flux reached in 1 week of minimum bias data
- ➢ Low background (hermetic veto, K⁺ tagger); search region extends into lower m_N
- \succ K⁺ \rightarrow e⁺N \longrightarrow background conditions allow to set a limits on this decay

Measurement of the ultra-rare decay $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

$K \rightarrow \pi v v in the SM \dots$

24-8-2016

... and beyond the SM

Several SM extensions predict sizable deviations for the BR Possibility to distinguish among different models 5 $BR(K_L \rightarrow \pi^0 \nu \nu) \text{ vs } BR(K^+ \rightarrow \pi^+ \nu \nu)$ E949 1σ $BR(K_L \rightarrow \pi^0 \nu \overline{\nu})$ 4 Grossman-Nir bound SM4 3 experimental RSc uncertainty 2 MFV NA62 Х expected 10^{10} precision 1 D. Straub LHT **CKM'10** 2 3 4 NP models predicting $10^{10} \times BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ high deviations from MFV [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108] Randall-Sundrum [Blanke, Buras, Recksiegel, arXiv:1507.06316 (2015)] *Littlest Higgs with T-parity* SM 4th generation

[Buras, Buttazzo, Knegjens, arXiv:1507.08672 (2015)]

NA62 - Experimental principles

♦ Goal → 10% precision Branching Ratio measurement
♦ O(100) K⁺ → $\pi^+ v \bar{v}$ events in ~ two years of data taking

Experiment and beam

Total Length 270m

- 400 GeV/c SPS primary protons
- 3 x 10¹² protons/pulse
- 75 GeV/c unseparated hadron beam ($\Delta p/p \pm 1\%$)
- Kaon component $\rightarrow 6\%$
- 800 MHz \rightarrow 50 MHz kaons \rightarrow 6 MHz decays
- 4.8 x 10^{12} K⁺ decays/y \rightarrow SES ~ 10^{-12}

Detector layout

Background and kinematics

92% Bkg separated from signal by kinematic cuts

8% not separated

Analysis strategy and background sources

Key analysis requirements

- ✓ 1 track $15 < P_{\pi+} < 35 \text{ GeV/c}$ and PID in the RICH
- ✓ z_{vert} in the 65 m long decay region
- ✓ No γ s in LAV, LKr, IRC, SAC
- ✓ No μ s in MUVs
- ✓ 1 beam particle in Gigatracker with K PID by KTAG

Expected backgrounds

Decay	evt/year
K ⁺ → π ⁺ νν [SM] (flux 4.5×10 ¹²)	45
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	<1
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$ + other 3 tracks decays	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma (IB)$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma (IB)$	0.5
$K^+ \rightarrow \pi^0 e^+(\mu^+) \nu$, others	negligible
Total background	< 10

Giuseppina Anzivino@NuFact 2016

NA62 data taking

- ✓ First data from pilot run in fall 2014
- ✓ First physics run June-November 2015
- ✓ 2016 run in progress (April-November)
- ✓ Expect to take data through 2018 (until LS2)

Beamline commissioned up to full intensity

Detector status

- ✓ Gigatracker partially commissioned
- ✓ Spectrometer, PID detectors, photon vetoes all fully operational Trigger and data acquisition status
- ✓ Level-0 trigger fully operational
- ✓ Level-1 and level-2 triggers partially commissioned
- Data and reconstruction quality under study using 2015 data
- ✓ Minimum-bias data at 1% beam intensity

Physics runs 2016 - 2018

- ✓ Currently running at 20% (50%) intensity
- ✓ Expect to collect few SM K⁺→ $\pi^+\nu\nu$ events by the end of 2016 run, on track

Signal selection

Minimum-bias data at 1% beam intensity

0.05

-0.05

–0.1¦⊔

πππ

 $\pi\pi^0$

20

30

40

50

60

70

80

90

P_{π+} [GeV/c]

one - track selection

- single downstream track topology
- Beam track matching the downstream track
- i_{ss} [GeV²/r .0 ✓ Beam track matching a K signal in E Kaon ID
- Downstream track matching energy in calorimeters

timing

- ✓ Match with hit in CHOD $(\sigma_{t} \sim 200 \text{ ps})$
- ✓ Match with hit in KTAG $(\sigma_{t} \sim 100 \text{ ps})$
- ✓ Association to hits in LKr, RICH, muon vetoes

100

10³

10²

10

NA62 Preliminary

015 Data

beam

activity

Signal selection and kaon ID

1-track selection K⁺ identification in KTAG Track origin in the fiducial region

1-track selection NO K⁺ identification in KTAG Beam activity

Kinematics

Downstream particle identification

- Goal: $O(10^7) \pi/\mu$ separation (suppress K_{µ2})
- ✓ RICH, calorimeters and muon veto
- ✓ RICH: $O(10^2) \pi/\mu$ separation, 80% π^+ efficiency in 2015 (momentum range $15 < P_{\pi+} < 35 \text{ GeV/c}$)

Calorimeters: $O(10^6)$ µ rejection at 50% π efficiency (expected to improve)

Photon rejection

Further NA62 physics programme

- Standard Kaon physics
 - → χ PT studies: K⁺→ $\pi^+\gamma\gamma$, K⁺→ $\pi^+\pi^0e^+e^-$, K⁺→ $\pi\pi l^+\nu$
 - → Lepton universality studies: $R_K = \Gamma(K^+ \rightarrow e^+ \nu) / \Gamma(K^+ \rightarrow \mu^+ \nu)$
- LFV/LNV in Kaon decays
 - $\rightarrow K^+ \rightarrow \pi^+ \mu^{\pm} e^{\mp}, K^+ \rightarrow \pi^- \mu^+ e^+, K^+ \rightarrow \pi^- l^+ l^+,$
- Heavy neutrino searches
 - \rightarrow K⁺ \rightarrow l⁺ $\nu_{\rm H}$
 - → $\nu_{\rm H}$ (from K, D decays) → $\pi^{\pm}l^{\mp}$
- $\succ \pi^0$ decays
 - → π^0 → invisible, π^0 → 3γ (4γ), π^0 → γU
- Dark sector searches
 - → Long living dark photon (from prompt mesons decays) → l^+l^-
 - → Long living axion-like (produced in beam-dump config.) → $\gamma\gamma$

Summary and outlook

NA62 beamline and detector commissioned and tested up to nominal intensity

- ***** Measurement of the R_K at NA62
 - \rightarrow result in agreement with SM expectation, within 1.2 σ
 - → motivation for further measurement

★ LNV in K[±]→ $\pi^{\mp}\mu^{\pm}\mu^{\pm}$ and search for two-body resonances (UL set)

- ***** The $K^+ \rightarrow \pi^+ \sqrt{v}$ decay \longrightarrow very challenging experiment
 - → Collect 0(100) events & provide a 10% BR measurement
 - → First physics run in 2015
 - Minimum bias data collected at low intensity used for data quality studies
 consistent with design expectations
 - → Data taking foreseen 2016 2018, currently running at 50% intensity
 - → Expect to collect a few SM $K^+ \rightarrow \pi^+ \nu \nu$ events by end of 2016 run
 - On schedule for the measurement

Many other Kaon measurements at the frontier of precision physics

NA62 Penguins at work

Additional information

Searches for HNL from the target

- HNL can be produced in meson decays at the T10 target
- These HNL can then decay inside the NA62 fiducial volume

- With zero background events, can probe beyond current limits
- Proof-of-principle from 2016 data: searches for dark photon and axion production at the target. Prospects for these searches are being evaluated

