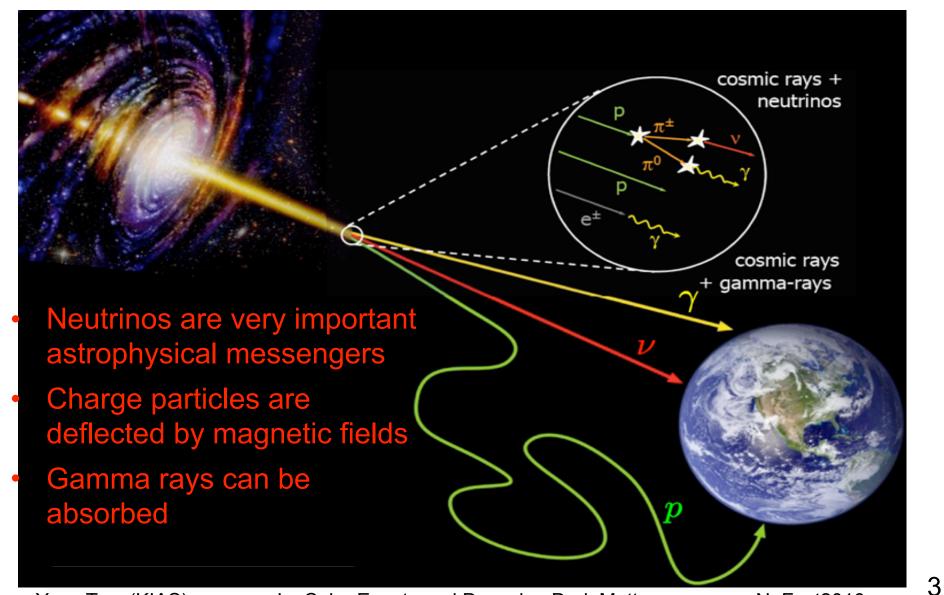
IceCube Events from Decaying Dark Matter through Neutrino Portal

Yong TANG(汤勇) Korea Institute for Advanced Study

NuFact 2016

based on P.Ko, YT, 1508.02500(PLB)


Outline

- Introduction
 - IceCube Neutrino Events
- DM with Neutrino Portal
- Numerical Results
- Summary

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

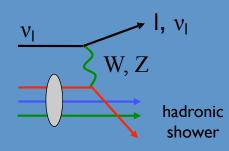
Astrophysical Neutrinos

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

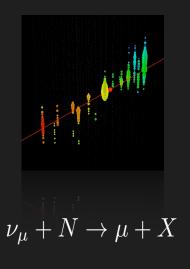
Principle of an optical Neutrino Telescope

41°

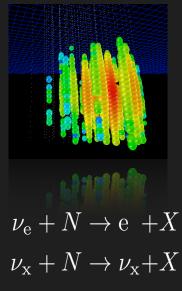

μ

MIDON

Carsten Rott


Array of optical sensors capture the

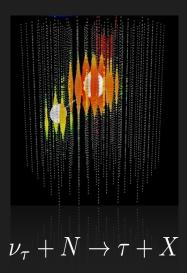
Cherenkov Radiation


Muon Neutrino

CC Muon Neutrino

track (data)

factor of ≈ 2 energy resolution < 1° angular resolution at high energies Neutral Current / Electron Neutrino



cascade (data)

 ≈ ±15% deposited energy resolution
 ≈ 10° angular resolution (in IceCube) (at energies ≥ 100 TeV)

CC Tau Neutrino

time

"double-bang" (≥10PeV) and other signatures (simulation)

(not observed yet: τ decay length is 50 m/PeV)

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Neutrino Events at IceCube

80

60

40

20

0

-20

-40

-60

-80

Declination (degrees)

- Full 988-day data
- 30TeV 2 PeV
- 37 events (9+28)
- **Muon Background**

 $N_{\mu^{\pm}} = 8.4 \pm 4.2$

Atmospheric neutrino

 $N_{\nu+\bar{\nu}}^{all} = 6.6^{+5.9}_{-1.6}$,

- reject pure atm, 5.7σ
- Isotropy, equal flavor
- global fit flux

 10^{3} 10^{2} $E^2 \frac{dJ_{\nu+\bar{\nu}}}{dE} = (0.95 \pm 0.3) \times 10^{-8} \text{GeV cm}^{-2} \text{ s}^{-1} \text{ sr} D \text{e} \text{posited EM-Equivalent Energy in Detector (TeV)}$

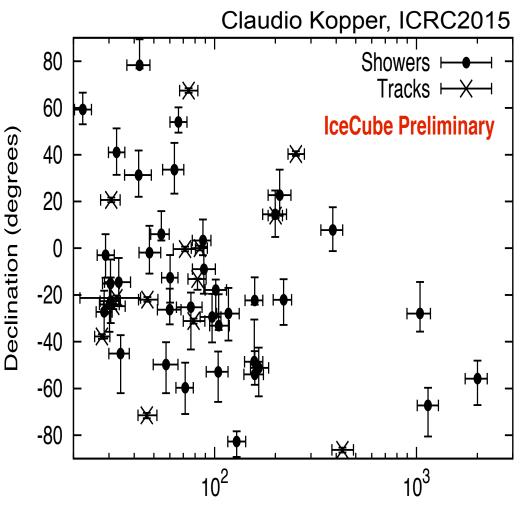
⊢≭⊣

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

6

IceCube, PRL 113, 101101(2014)


Showers

Tracks ---X---

- Full 4-year data
- ~30TeV 2 PeV
- 54 events (15+39)
- Muon Background

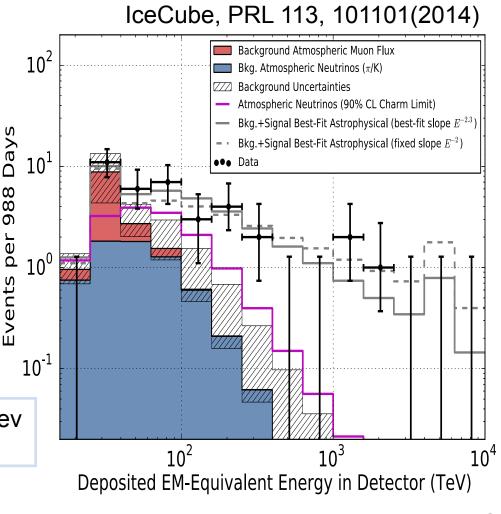
 $N_{\mu^{\pm}} = 12.6 \pm 5.1$

- Atmospheric neutrino $N_{\nu+\bar{\nu}}^{all}=9.0^{+8.0}_{-2.2}$
- reject pure atm, 6.5σ

Deposited EM-Equivalent Energy in Detector (TeV)

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

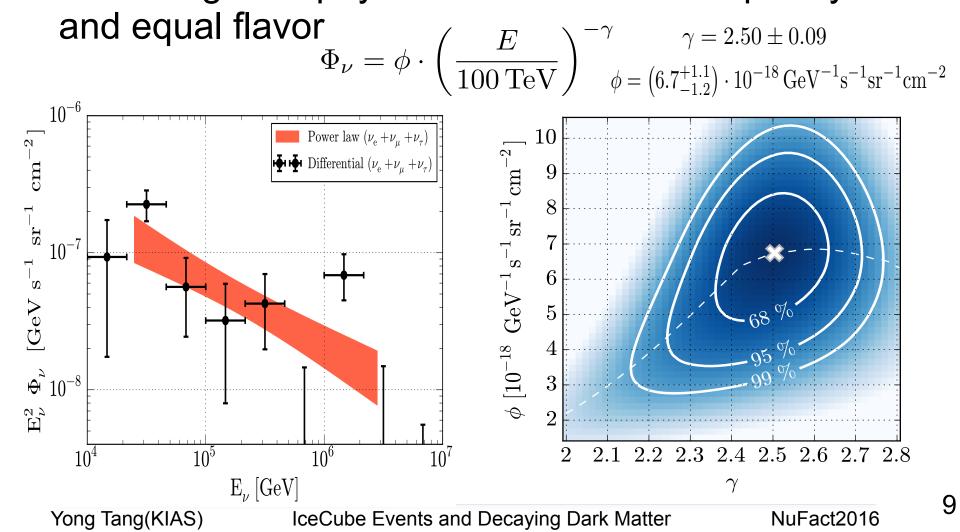

NuFact2016

Astrophysical Sources

- Supernova Remnants
- Active Galactic Nuclei
- Gamma-Ray Burst

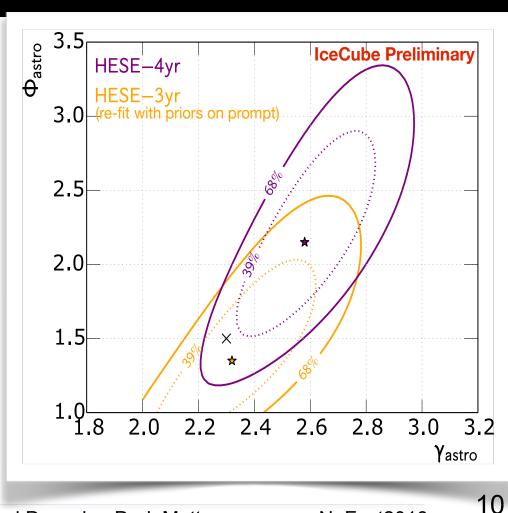
Usually start with some specific emission spectra and consider py and pp interactions

Ahlers, Bahcall, Beacom, Essey, Kalashev Kusenko, Leob, Murase, Waxman, *et al*



IceCube Events and Decaying Dark Matter

Power law


IceCube 1507.03991

Assuming astrophysical flux arrives isotropically

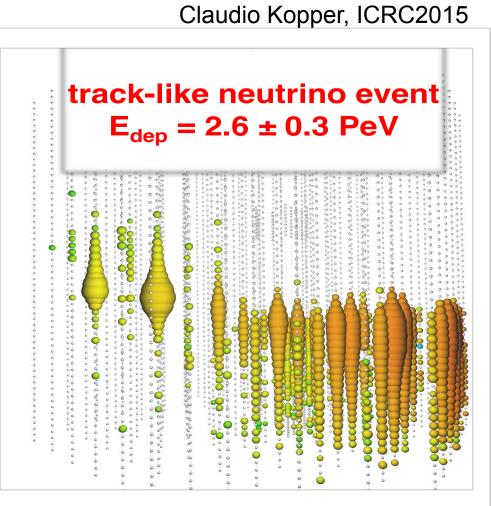
Spectral Fit

- Best fit spectral moex $\gamma=2.58$
- Prefer softer spectrum
- Potential cut-off at about 2-5 PeV

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

NuFact2016

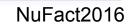

Spectral Fit

- Best fit spectral index $\gamma=2.58$
- Prefer softer spectrum
- Potential cut-off at about 2-5 PeV

challenge?

1 up-going muon-track event with ~2.6 PeV deposited energy, estimated neutrino energy ~6-10 PeV

γ<2.1–2.3, EG diffuse γ-ray


Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Dark Matter

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Disclaimer!


- The spectrum is consistent with single power-law arriving neutrino flux
- Astrophysical sources are not definitely clear at the moment, and there is *no compelling* evidence for dark matter explanation
- Nevertheless, neutrinos from DM decay may have some testable features

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Framework

Mixed contributions

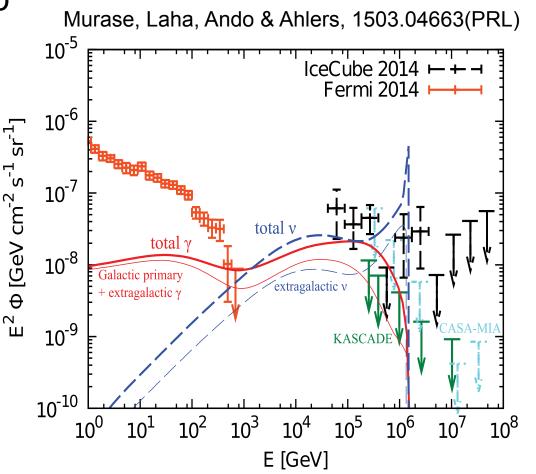
DM Interpretations

- PeV dark matter
- late time decay, lifetime $10^{27} 10^{28}$ s
- Non-thermal production
- For PeV neutrino events, DM could have decay channels to neutrino *directly*.
- It might be possible to explain the "possible" gap (*not statistically significant*) between 0.5 —1 PeV.

Neutrino Portal

- Gauge invariant operator $\overline{L}\widetilde{H}$, couples to dark matter χ through $y\overline{L}\widetilde{H}\chi$.
- To explain the IceCube PeV neutrino events, the Yukawa coupling should be around $y \sim 10^{-29}$.

Feldstein, Kusenko, Matsumoto & Yanagida, 1303.7320


 Although incredible small coupling, but still technically natural.

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

$y\overline{L}\widetilde{H}\chi$ vs lceCube

- Spectrum is very sharp mainly because of two body decay.
- May not be viable any The more if considering the more if considering the much highly energetic muon tracking event.
- Gamma ray can put strong bounds.

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

17

NuFact2016

Model Setup

P.Ko, YT, 1508.02500(PLB)

- Right-handed neutrino portal, N
- Dark sector with gauge symmetry
- Assume $U_X(1)$ and $\chi \text{dark matter}, Q' = 1$ $\Phi - \text{dark Higgs}, Q' = 1$

X - dark photon

Lagrange

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{N}i\partial N - \left(\frac{1}{2}m_N\bar{N}^cN + y\bar{L}\tilde{H}N + \text{h.c.}\right)$ $-\frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{1}{2}\sin\epsilon X_{\mu\nu}F_Y^{\mu\nu} + D_\mu\Phi^\dagger D^\mu\Phi - V(\Phi, H)$ $+\bar{\chi}\left(i\not\!\!D - m_\chi\right)\chi - \left(f\bar{\chi}\Phi N + \text{h.c.}\right),$

IceCube Events and Decaying Dark Matter

NuFact2016

Model Setup

P.Ko, YT, 1508.02500(PLB)

- Right-handed neutrino portal, N
- Dark sector with gauge symmetry
- Assume $U_X(1)$ and $\chi \text{dark matter}, Q' = 1$

 Φ – dark Higgs, Q' = 1

Lagrange

X - dark photon

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{N}i\partial N - \left(\frac{1}{2}m_N\bar{N}^cN + y\bar{L}\bar{H}N + \text{h.c.}\right)$ $- \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{1}{2}\sin\epsilon X_{\mu\nu}F_Y^{\mu\nu} + D_\mu\Phi^\dagger D^\mu\Phi - V(\Phi, H)$ $+ \bar{\chi}\left(i\not D - m_\chi\right)\chi - \left(f\bar{\chi}\Phi N + \text{h.c.}\right),$

IceCube Events and Decaying Dark Matter

Integrate heavy N

When N is much heavier than dark matter χ , we can integrate N and get effective operators

$$\frac{yf}{m_N}\bar{\chi}\Phi H^{\dagger}L + h.c.,$$

after spontaneous symmetry breaking,

$$H \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v_H + h(x) \end{pmatrix}$$
 and $\Phi \to \frac{v_{\phi} + \phi(x)}{\sqrt{2}}$.
we have (common factor yf/2)

 $\frac{v_{\phi}v_H}{m_N}\bar{\chi}\nu, \ \frac{v_{\phi}}{m_N}\bar{\chi}h\nu, \ \frac{v_H}{m_N}\bar{\chi}\phi\nu, \ \frac{1}{m_N}\bar{\chi}\phi h\nu,$

Yong Tang(KIAS)

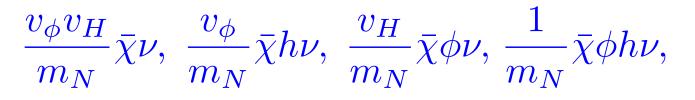
IceCube Events and Decaying Dark Matter

20

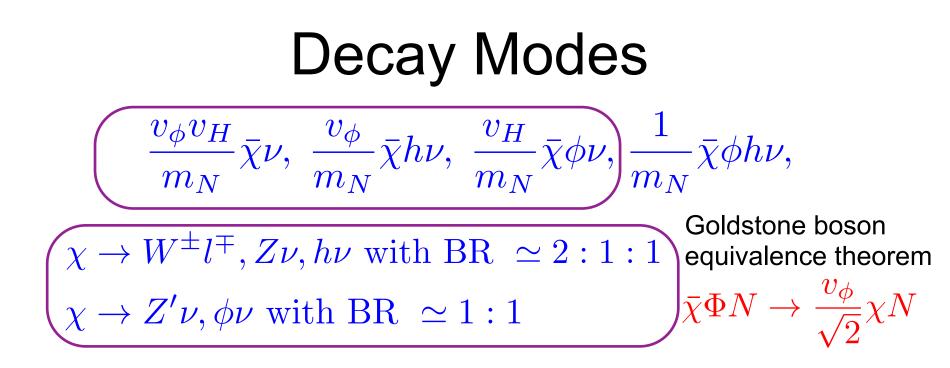
NuFact2016

Mixing

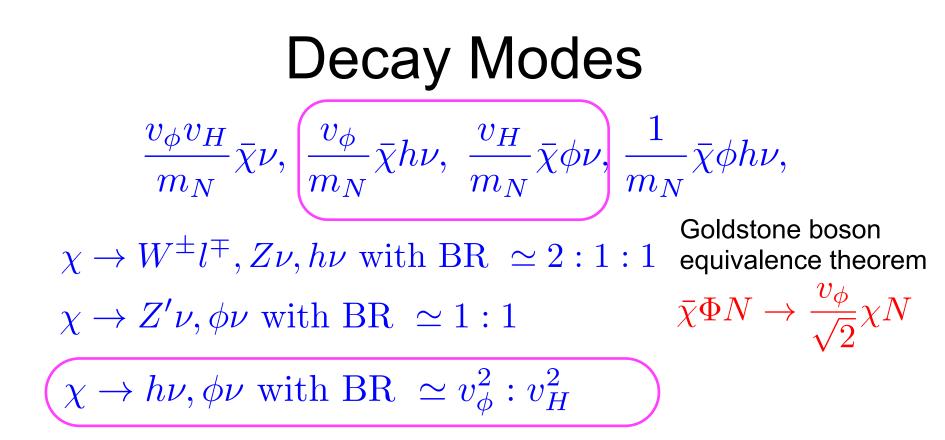
kinetic mixing leads to


 $(B^{\mu}, W^{\mu}_{3}, X^{\mu}) \to (A^{\mu}, Z^{\mu}, Z'^{\mu})$

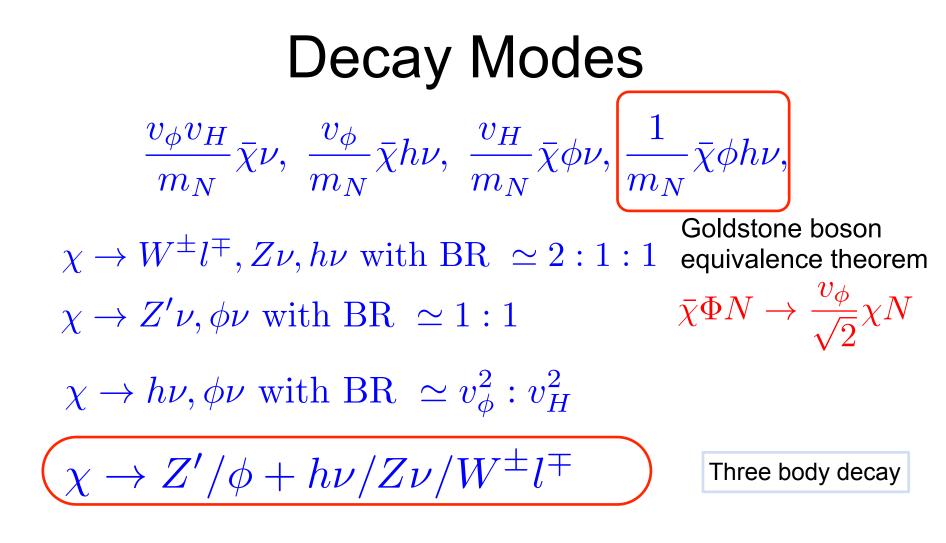
• $\lambda_{\Phi H} \Phi^{\dagger} \Phi H^{\dagger} H$ gives


 $(h,\phi) \rightarrow (H_1,H_2)$

• Z' and $H_2(\text{or } X \text{ and } \phi)$ can decay into standard model particle pairs.


Decay Modes

IceCube Events and Decaying Dark Matter



IceCube Events and Decaying Dark Matter

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

IceCube Events and Decaying Dark Matter

NuFact2016

$$\begin{array}{l} & \underbrace{v_{\phi}v_{H}}{m_{N}}\bar{\chi}\nu, \ \frac{v_{\phi}}{m_{N}}\bar{\chi}h\nu, \ \frac{v_{H}}{m_{N}}\bar{\chi}\phi\nu, \ \frac{1}{m_{N}}\bar{\chi}\phih\nu, \\ & \underbrace{\chi \rightarrow W^{\pm}l^{\mp}, Z\nu, h\nu \text{ with BR } \simeq 2:1:1}{\chi \rightarrow Z'\nu, \phi\nu \text{ with BR } \simeq 1:1} \\ & \chi \rightarrow h\nu, \phi\nu \text{ with BR } \simeq v_{\phi}^{2}:v_{H}^{2} \\ & \chi \rightarrow Z'/\phi + h\nu/Z\nu/W^{\pm}l^{\mp} \end{array} \right)^{\text{Goldstone boson equivalence theorem } \overline{\chi}\Phi N \rightarrow \frac{v_{\phi}}{\sqrt{2}}\chi N \\ & \text{Three body decay} \end{array}$$

In principle, all decay channels need to be included.

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

NuFact2016

$$\begin{array}{l} \textbf{3-body decays dominate} \\ \frac{\Gamma_3\left(\chi \to \phi h\nu\right)}{\Gamma_2\left(\chi \to h\nu, \phi\nu\right)} \simeq \frac{1}{16\pi^2} \frac{m_{\chi}^2}{v_{\phi}^2 + v_H^2} \gg 1 \end{array}$$

• 2-body decays only results from symmetry breaking when $m_N > m_\chi$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \bar{N}i\partial N - \left(\frac{1}{2}m_N\bar{N}^cN + y\bar{L}\tilde{H}N + \text{h.c.}\right) - \frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{1}{2}\sin\epsilon X_{\mu\nu}F_Y^{\mu\nu} + D_\mu\Phi^\dagger D^\mu\Phi - V(\Phi, H) + \bar{\chi}\left(i\not{D} - m_\chi\right)\chi - \left(f\bar{\chi}\Phi N + \text{h.c.}\right),$$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

 $\frac{\Gamma_{2-\text{body}}}{\Gamma_{3-\text{body}}} \sim \frac{v^2}{m_{\gamma}^2}$

NuFact2016

Parameter Estimation

• We can estimate

$$\begin{split} \Gamma_3 \left(\chi \to \phi h \nu \right) &\sim \frac{m_\chi^3}{96 \pi^3} \left(\frac{yf}{m_N} \right)^2 \sim \frac{1}{10^{28} \text{sec}} \\ \Rightarrow &\frac{yf}{m_N} \sim 10^{-36} \text{GeV}^{-1}, \end{split}$$

- small y and f but technically natural
- If N is responsible for active neutrino mass through type-I seesaw $y \sim 10^{-5} \sqrt{\frac{m_N}{\text{PeV}}}$ then we shall have

 $y \sim 1, f \sim 10^{-22}$ for $m_N \sim 10^{14} \text{GeV}$

 $y \sim 10^{-5}, f \sim 10^{-25}$ for $m_N \sim \text{PeV}$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Neutrino Spectrum

Spectrum is given by

$$\frac{dN}{dE}\left(x \to \nu\right) = \int \frac{1}{\Gamma} \frac{d\Gamma}{dE_x} \frac{d\Gamma}{dE_x} \frac{dN_{\nu}\left(E_x\right)}{dE} dE_x, \quad ````$$

χ

where $x = \nu, h, W, Z, Z', \phi$

• We calculate the differential decay width

$$\frac{1}{\Gamma} \frac{d\Gamma}{dE_{\nu}} \simeq 24E_{\nu}^2/m_{\chi}^3, \ 0 < E_{\nu} < m_{\chi}/2,$$
$$\frac{1}{\Gamma} \frac{d\Gamma}{dE_h} \simeq 12E_h \left(m_{\chi} - E_h\right)/m_{\chi}^3, \ 0 < E_h < m_{\chi}/2,$$
$$\frac{1}{\Gamma} \frac{d\Gamma}{dE_{\phi}} \simeq 12E_{\phi} \left(m_{\chi} - E_{\phi}\right)/m_{\chi}^3, \ 0 < E_{\phi} < m_{\chi}/2.$$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

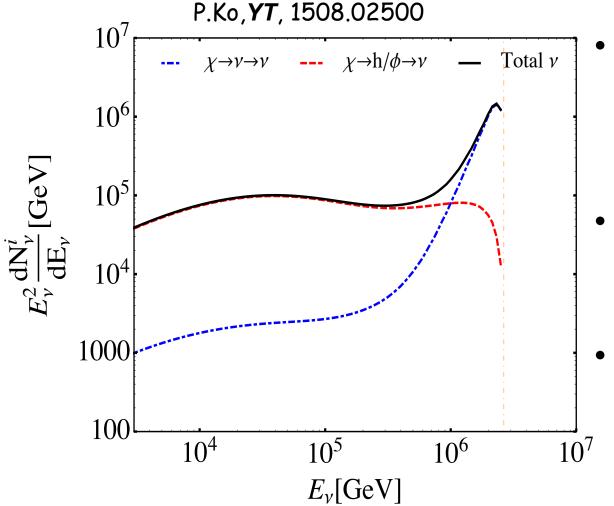
29

h

ν

Neutrino Spectrum Spectrum is given by χ where $x = \nu, h, W, Z, Z', \phi$ Pythia, PPPC4DM

• We calculate the differential decay width

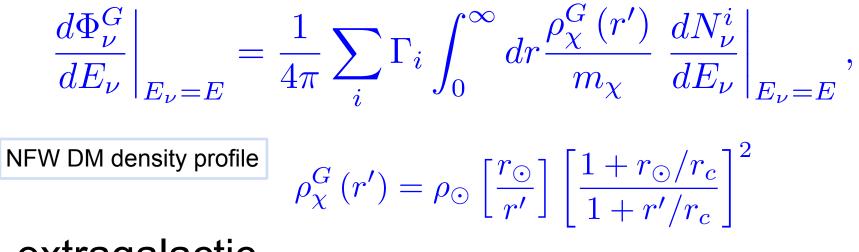

 $\begin{aligned} \frac{1}{\Gamma} \frac{d\Gamma}{dE_{\nu}} &\simeq 24E_{\nu}^2/m_{\chi}^3, \ 0 < E_{\nu} < m_{\chi}/2, \\ \frac{1}{\Gamma} \frac{d\Gamma}{dE_{h}} &\simeq 12E_{h} \left(m_{\chi} - E_{h}\right)/m_{\chi}^3, \ 0 < E_{h} < m_{\chi}/2, \\ \frac{1}{\Gamma} \frac{d\Gamma}{dE_{\phi}} &\simeq 12E_{\phi} \left(m_{\chi} - E_{\phi}\right)/m_{\chi}^3, \ 0 < E_{\phi} < m_{\chi}/2. \end{aligned}$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

NuFact2016

Spectrum at production


- Decay channels with neutrino are most important for high energy
- Low energy part is most contributed by other states.
- The are one order of magnitude difference between high and low parts.

Yong Tang(KIAS)

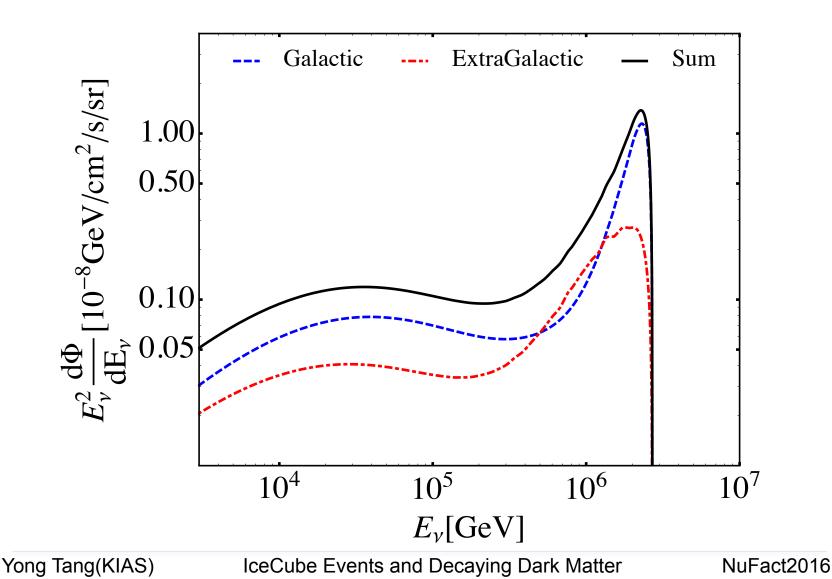
IceCube Events and Decaying Dark Matter

Neutrino Flux at Earth

- Both Galactic and Extragalactic flux included,
- galactic

extragalactic

$$\frac{d\Phi_{\nu}^{EG}}{dE_{\nu}}\Big|_{E_{\nu}=E} = \frac{\rho_c \Omega_{\chi}}{4\pi m_{\chi}} \sum_i \Gamma_i \int_0^\infty \frac{dz}{\mathcal{H}} \left. \frac{dN_{\nu}^i}{dE_{\nu}} \right|_{E_{\nu}=(1+z)E},$$


Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

32

NuFact2016

Neutrino Flux at Earth

Astrophysical Flux

Astrophysical neutrinos are responsible for the low energy spectrum

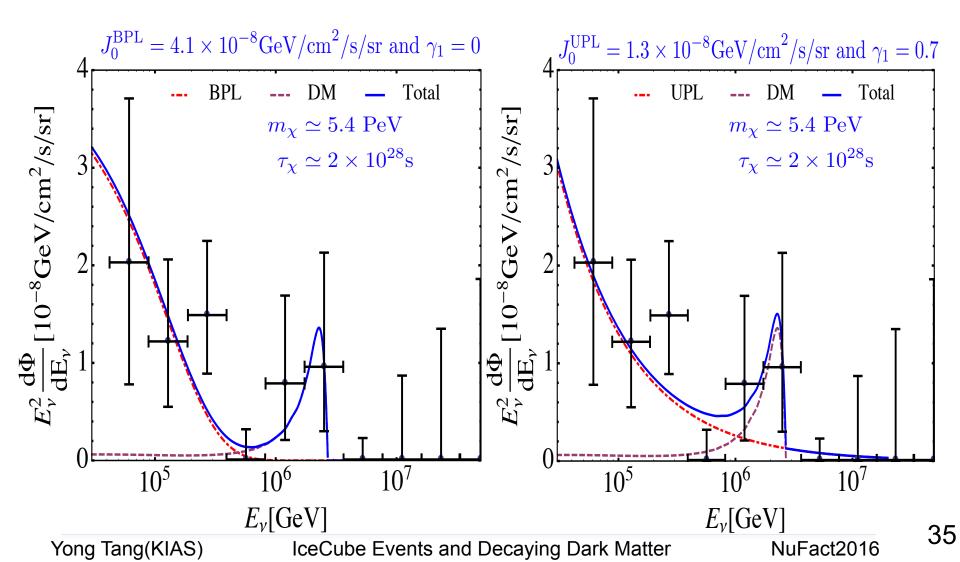
Two Cases:

i) Unbroken Power Law (UPL):

$$E_{\nu}^{2} \frac{\mathrm{d}J_{\mathrm{Ast}}}{\mathrm{d}E_{\nu}} \left(E_{\nu}\right) = J_{0} \left(\frac{E_{\nu}}{100 \,\mathrm{TeV}}\right)^{-\gamma} ,$$

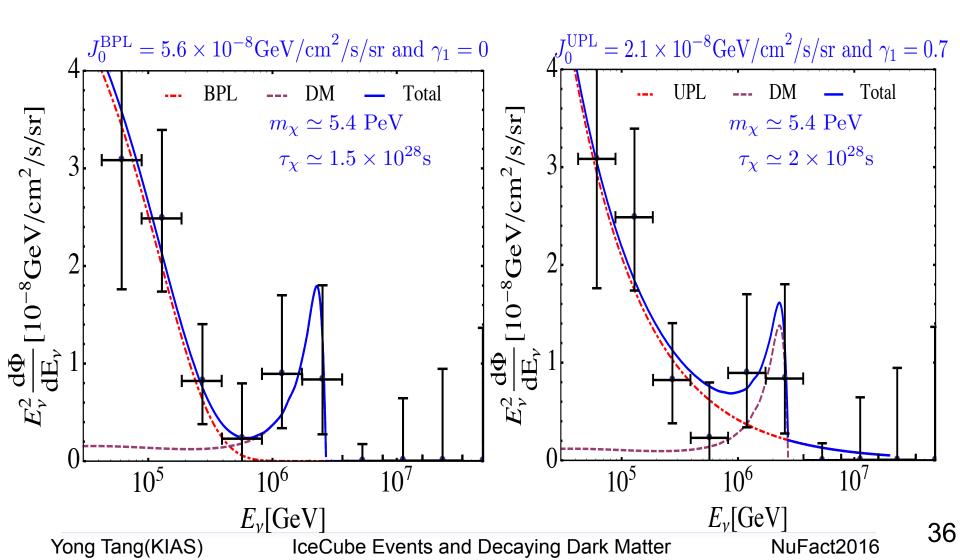
ii) Broken Power Law (BPL):

$$E_{\nu}^{2} \frac{\mathrm{d}J_{\mathrm{Ast}}}{\mathrm{d}E_{\nu}} \left(E_{\nu}\right) = J_{0} \left(\frac{E_{\nu}}{100 \,\mathrm{TeV}}\right)^{-\gamma} \exp\left(-\frac{E_{\nu}}{E_{0}}\right) \,,$$

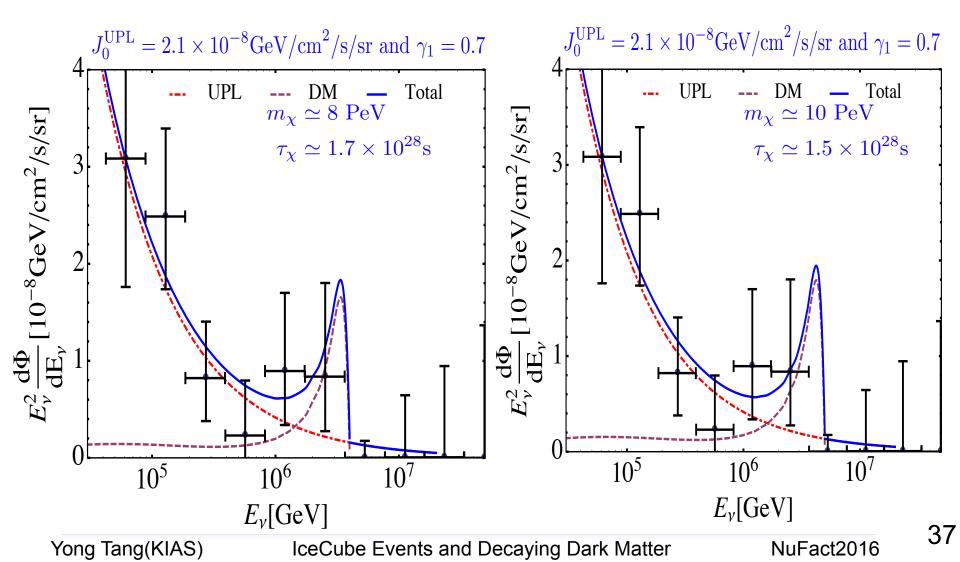

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

NuFact2016


3-year spectrum

P.Ko, YT, 1508.02500


4-year spectrum

P.Ko, YT, 1508.02500

Heavier DM

P.Ko, YT, 1508.02500

Direct Detection

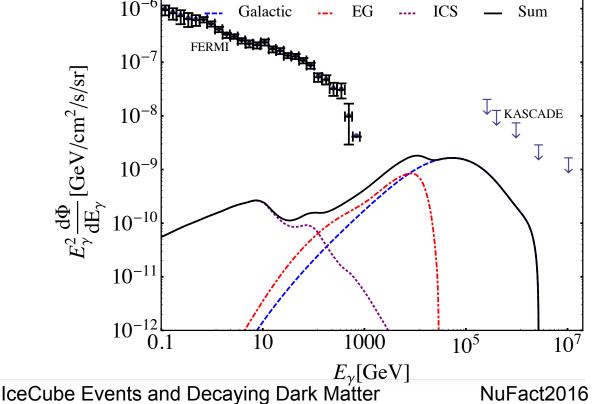
 Direct detection constrains the DM-nucleon scattering cross section

$$\sigma_{\chi N} \sim \left(\frac{m_Z^2}{m_{Z'}^2}\right)^2 \sin^2 \epsilon \times 10^{-39} \text{cm}^2$$

 Currently, the most stringent bound is from LUX limit

$$\sigma_{\chi N} < 10^{-45} \mathrm{cm}^2 \times \frac{m_{\chi}}{100 \mathrm{GeV}},$$

which can be easily satisfied for TeV Z' and


 $\epsilon \lesssim 0.1$

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter

Other Indirect Signals

- Charged particles, like positrons, and gammaray are also produced,
- For decaying PeV DM, lifetime ~ 10^28s is still allowed
 10⁻⁶ Galactic EG ICS Sum

Yong Tang(KIAS)

Summary

- IceCube has definitely observed astrophysical neutrinos, with several PeV events.
- Interesting explanations include dark matter and astrophysics.
- PeV events could be due to heavy dark matter decay with $m_\chi\sim 5~{
 m PeV}, \tau_\chi\sim 10^{28}{
 m s}$
- We propose a DM model based on U(1) gauge symmetry and right-handed neutrino portal, DM's three-body-decay could be responsible for the observed PeV events.

NuFact2016

Thanks for your attention.

Yong Tang(KIAS)

IceCube Events and Decaying Dark Matter