

Search for v_e appearance at T2K & latest oscillation results.

Benjamin Quilain (Kyoto University) on behalf of the T2K collaboration

Outline :

- 1. The T2K experiment
- 3. Results of the $\overline{\nu}$ appearance search.
- 4. Latest constraints on atmospheric parameters & CP violation.
- 5. Future improvements & TK Phase-II sensitivity

I-Overview of the T2K Experiment

 \rightarrow Observation of v_{e} appearance in a v_{u} beam and v_{u} disappearance & \overline{v} equivalents

Benjamin Quilain Summary of the oscillations at T2K

Benjamin Quilain Muon neutrino beam production

• Observation of v_{e} appearance in a v_{u} beam and v_{u} disappearance & \overline{v} equivalents

Beam direction

- <u>T2K is an off-axis experiment</u>: neutrino beam aimed at 2.5° from Super-K to maximize the oscillation at 295 km → Tune energy spectrum (600 MeV)
- <u>But :</u>
 - ν beam does not have one flavour & energy.
 - v beam intensity & shape are not perfectly known.

• \rightarrow Requires beam rate & shape measurements before oscillation !

Benjamin Quilain D280 detectors constraints on flux

Flux & cross-section extrapolation at SK

 \rightarrow Require the SK measurement & reconstruction efficiency

Benjamin Quilain The Far Detector : Super-Kamiokande

- 50 kT water Cherenkov detector (Fiducial Volume = 22.5 kT)
- <u>T2K event selection :</u> [-2, 10] µs around beam trigger.
- <u>High μ/e separation</u> (ring sharpness): misidentification probability of a signle electron is 0.7 % (0.8 % for μ)

Single ring μ -like (SK-1R μ) ~ CCQE (ν_{μ})

8

• v-mode & \overline{v} -mode treated as separated samples.

 \rightarrow 4 samples : v-mode & v-mode SK-1Rµ & SK-1Re

Benjamin Quilain II-Oscillation results from the T2K experiment

9

Accumulated neutrino beam

- Beam power reached 425 kW.
- Accumulated ~same number of POT (protons-on-target) in v-mode & \overline{v} -mode.
- Recently, almost taken only data in $\overline{\nu}$ -mode \rightarrow today's results update mainly in $\overline{\nu}$ -mode.

Benjamin Quilain Selected events at Super-Kamiokande

- <u>4 samples :</u> v-mode & \overline{v} -mode SK-1Rµ & SK-1Re
- MC predictions shown here for Asimov with NH & $\delta_{CP} = -\pi/2$

• <u>Number of events :</u>

Normal hierarchy						
Beam mode	Sample	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$	$\delta_{CP} = \pi$	Observed
neutrino	μ -like	135.8	135.5	135.7	136.0	135
neutrino	e-like	28.7	24.2	19.6	24.1	32
antineutrino	μ -like	64.2	64.1	64.2	64.4	66
antineutrino	e-like	6.0	6.9	7.7	6.8	4

Parameter	Value
$\sin^2 heta_{12}$	0.304
$\sin^2 2\theta_{13}$	0.085
$\sin^2 \theta_{23}$	0.528
Δm_{21}^2	$7.53 imes 10^{-5}~{ m eV^2/c^4}$
Δm_{32}^{2}	$+2.509 imes 10^{-3} \mathrm{eV^2/c^4}$
δ_{CP}	-1.601

More v_{e} & less \overline{v}_{e} events observed than expected ! \rightarrow Even with NH & $\delta_{CP} = -\pi/2$

The joint fit method & errors

• Oscillation & systematic parameters shared between the 4 SK samples

Benjamin Quilain

 \rightarrow Joint fit of the 4 samples \rightarrow maximize sensitivity to the oscillation parameters !

v_a appearance search

- <u>Motivations</u> : $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ has never been observed !
- <u>To test the $\overline{\nu}_{\underline{e}}$ appearance only</u>: $P(\nu_{\mu} \rightarrow \nu_{e})$ unchanged. $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ [PMNS] $\rightarrow \beta \times P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

 $\beta=0 \rightarrow No \overline{v}_{e}$ appearance, $\beta=1 \rightarrow \overline{v}_{e}$ appearance predicted by PMNS

• <u>Null hypothesis testing</u>: no \overline{v}_{α} appearance (β =0) + PMNS model testing (β =1).

• <u>Prior used for the parameters :</u>

			8
Parameter	Prior	Variation range	
$\sin^2 \theta_{12}$	fixed	0.304	
$\sin^2 2 heta_{13}$	gaussian	0.085 ± 0.005	
$\sin^2 heta_{23}$	uniform	[0.3; 0.7]	
Δm^2_{21}	fixed	$7.53 imes 10^{-5} { m eV^2/c^4}$	
Δm^2_{32}	uniform	$[2;3] imes 10^{-3} \mathrm{eV^2/c^4}$	
δ_{CP}	uniform	$[-\pi;+\pi]$	
Mass hierarchy	uniform	0.5 for NH and IH	

- Joint fit is used \rightarrow Apply the T2K constraints from the ν_{μ} , $\nu_{e} \& \overline{\nu}_{\mu}$ data samples on the $\overline{\nu}_{e}$ sample.
- Correlations between the 4 samples are maintained using a posterior predictive method.

• <u>2 analyses :</u>

Rate-only \rightarrow Observable is the number of observed events.

Rate+shape \rightarrow Observable is the fitted χ^2 difference between $\beta=0$ & $\beta=1$ hypotheses.

$$\Delta \chi^2 = \chi^2(\beta = 0) - \chi^2(\beta = 1)$$

ν appearance search

• Results are shown for $\beta=0$ hypothesis in the toy generation)

 v_{e} • <u>Results on the number of events :</u> v_{e} Expected (Asimov NH & $\delta_{CP} = -\pi/2$ 28.76.0 **Observed** (Data) 324

• Again \rightarrow Higher discrepancy between $v_{\alpha} \& v_{\alpha}$ events observed than expected!

Interpretation of the results

• <u>Results summary :</u>

:P-value (β =0)P-value (β =1)Rate-only0.410.21Rate+shape0.460.07

 $N_{\bar{\nu}e}^{obs} = 4 \ (N_{\bar{\nu}e}^{exp} = 6.0) \rightarrow \text{lower rate} \rightarrow \text{Data set compatible with no } \overline{\nu}_{e} \text{ appearance.}$

- Data are in mild tension with the PMNS model
 - \rightarrow Due to Higher assymetry between v_{ρ} & v_{ρ} than expected w/ maximal CPV & NH
 - \rightarrow Not only rate, but shape also increases the disagreement.

• <u>2 data point far from data peak</u> \rightarrow Not only the rate is low, but the shape of $\overline{v}_{_{e}}$ events looks like background ! \rightarrow Rate+Shape : ~20 deviation from PMNS

$v_{\mu} \& \overline{v}_{\mu}$ disappearance

- <u>Motivations</u> :
 - Test CPT conservation by comparing $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$ and $P(\nu_{\mu} \rightarrow \nu_{\mu})$.
 - Assuming PMNS model (CPT conservation), tighten constraint on $\theta_{23} \& \Delta m_{32}^2$.
- <u>Results :</u>

<u>v-mode events:</u> 135.8 exp. / 135 obs / \overline{v} -mode events: 64.2 exp. / 66 obs.

 $\overline{\nu}_{\mu}$ disappearance clearly observed in rate & shape @ 600 MeV.

$v_{\mu} \& \overline{v}_{\mu}$ disappearance

 $\frac{\text{Benjamin Quilain}}{\text{Full joint fit : constraints on } \theta_{13} \& \delta_{0}$

• <u>Reminder : For NH & $\delta_{CP} = -\pi/2$: 27.0 ν_{e} & 6.0 $\overline{\nu}_{e}$ expected.</u>

 $\rightarrow 32 \nu_{e} \& 4 \overline{\nu}_{e}$ observed $\rightarrow T2$ K's observed difference between the observed events is larger than PMNS predictions for $\delta_{CP} = -\pi/2$!

• Maximal CPV favoured ($\delta_{CP} = -\pi/2$) \rightarrow The $\overline{\nu}_{e}$ data confirms the tendency seen in ν_{e}

Full joint-fit : constraints on δ_{CP}

• Marginalize over $\sin^2(2\theta_{13})$ assuming the reactor constraints.

- $\underline{\delta}_{CP} \underline{90 \% CL}$: [-3.13, -0.39] (NH) and [-2.09, -0.74] (IH)
- $\delta_{CP} = 0$ excluded > 2σ .

III-Improvements & prospects

- Continue to take data, with higher beam intensity \rightarrow @500 kW this year \rightarrow 750 kW in 2018 \rightarrow > 1 MW in 2021 ?
- Flux, ND280 and SK analyses improvement \rightarrow reduce systematics by 2/3 \rightarrow reach 4 %.
- Include multi ring e-like at SK (+35 % statistics) & increase Fiducial Volume (+10~15%).
- <u>Future :</u> proposal for T2K-phase II experiment \rightarrow #POT from 7.8 (T2K) to 20.0×10²¹ POT

- T2K aim to reach the number of approved POT (7.8×10²¹) in 2021 \rightarrow starts T2K-II phase in 2021 \rightarrow 2026.
- 13 times more statistics than now (summer 2016)!
- <u>Rely on an beam performance upgrade :</u>
 → see Nakadaira-san's talk

III-T2K-II sensitivity

• <u>Goal</u> : First experiment to exclude CP conservation > 3σ !

Conclusions

- T2K accumulated a total of 1.51×10²¹ POT (v:v = 1:1) ~ 19 % of T2K total stat.
 → T2K will continue to accumulate lots of data with an higher accumulation rate.
 (J-PARC beam operated @425 kW → 500 kW expected this autumn)
- \overline{v}_{e} appearance search :

→ Data set is compatible with no $\overline{\nu}_{e}$ appearance → Only 4 events in the $\overline{\nu}_{e}$ ($\overline{\nu}$ -mode SK-1Re) sample.

 \rightarrow Higher assymetry between $\nu_{e} \& \overline{\nu}_{e}$ than expected + shape effect \rightarrow the $\overline{\nu}_{e}$ appearance results deviate from ~2\sigma with respect to the PMNS model.

- $\overline{\nu}_{\mu}$ disappearance observed & compatible with ν_{μ} disappearance \rightarrow No CPT violation observed
- T2K full data set favours maximal mixing for θ_{23} .
- Joint fit constraints on $\theta_{\underline{13}} \& \delta_{\underline{CP}}$:
 - \rightarrow Agree with reactor's results.

 \rightarrow Prefer large CP violation ($\delta_{CP} = -\pi/2$) \rightarrow Driven by the large assymptry between $\nu_e \& \overline{\nu}_e$.

• CP parity is excluded with more than 90 %CL \rightarrow **Please, stay tuned.**

Additional slides

17

Selection at Super-Kamiokande

$v_{\mu} \& \overline{v}_{\mu}$ disappearance

Off-axis technique

- <u>T2K is an off-axis experiment :</u> neutrino beam aimed at 2.5° from Super-K.
- <u>Why ?</u> maximize oscillation at 295 km
 → Tune energy spectrum (600 MeV)
 - Higher statistics of oscillated neutrinos
 - **Reduce contamination** from non-oscillated high-energy neutrinos
 - Reduce v_e contamination
- <u>But :</u>
 - $\boldsymbol{\nu}$ beam does not have one flavour & energy.
 - ν beam intensity & shape are not perfectly known.

• \rightarrow Requires beam rate & shape measurements before oscillation !

The ND280 detector

Oscillation Parameters ($\theta_{13}, \delta_{cp}, \Delta m_{32}^2, \theta_{23}$)

Remaining issues in neutrino oscillations

Appearance Formula

 $P(\nu_{\mu} \rightarrow \nu_{e}) = \boxed{4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31}} \\ +8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta - s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ -8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \\ +4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2} + s_{12}^{2}s_{23}^{2}s_{13}^{2} - 2c_{12}c_{23}s_{12}s_{23}s_{13}\cos\delta)\sin^{2}\Delta_{21} \\ -8c_{13}^{2}s_{12}^{2}s_{23}^{2}\frac{aL}{4E}(1 - 2s_{13}^{2})\cos\Delta_{32}\sin\Delta_{31} \\ +8c_{13}^{2}s_{13}^{2}s_{23}^{2}\frac{a}{\Delta m_{31}^{2}}(1 - 2s_{13}^{2})\sin^{2}\Delta_{31} \end{aligned}$

Leading order :

• Sensitive theta13 & theta23

Higher orders :

- Dependence on solar parameters also
- Sensitivity to CP violation & matter effects