

Results from the OPERA experiment in the CNGS beam

A. Paoloni (INFN – LNF) on behalf of the OPERA collaboration

NUFACT 2016

Quy Nhon, 23 August 2016

140 physicists, 11 countries, 28 institutions

The OPERA project

The v_{τ} detection technique

"short" decays: I.P.

Modular detector of "Emulsion Cloud Chambers" (or bricks) Reconciles the needs for:

- Large mass
 - $N_{\tau} \propto (\Delta m^2)^2 M_{target}$
- Extreme granularity
 - μm space resolution

The OPERA experiment

``Brick-finding''

+ several ancillary facilities "off-site":

- Assembly/disassembly of bricks (LNGS)
- Brick Manipulator System (LNGS)
- Labelling and X ray marking (LNGS)
- Automatised development (LNGS)
- Scanning of CS doublets (LNGS+JP)
- Scanning bricks (Europe + JP)

CERN Neutrinos to Gran Sasso

The oscillation peak for L= 732 km at ~ 1.5 GeV (similar to NuMI) but the beam is designed to observe τ leptons:

< E _v >	17 GeV	
L / < E _v >	43 km/GeV	

N(
$$\tau$$
)~ Pr($\nu_{\mu} \rightarrow \nu_{\tau}$) x $\sigma_{\nu(\tau)CC}$ (E) x flux

Fluxes:

$(v_e + \overline{v_e}) / v_{\mu}$	0.9 %	
$\overline{\mathbf{v}}_{\mu} \boldsymbol{I} \mathbf{v}_{\mu}$	2.1 %	
v_{τ} prompt (from D _s)	negligible	

Interaction rates (1.8 x 10^{20} pot):

~ 20k ν_{μ} CC+NC 66.4 ν_{τ} CC (not efficiency corrected)

Collected data samples

The 5 year long CNGS run has ended in 2012.

1.8 x 10^{20} p.o.t. collected 80% of the design (2.25 x 10^{20})

1.25 kton initial target mass
(150 k bricks)

19505 neutrino interactions in the emulsion targets.

Year	Days	p.o.t. (10 ¹⁹)	v interactions
2008	123	1.74	1698
2009	155	3.53	3693
2010	187	4.09	4248
2011	243	4.75	5131
2012	257	3.86	3923
tot	965	17.97	19505

Brick finding

OPERA is a hybrid apparatus.

Electronic detectors predictions to locate bricks with neutrino interactions.

Brick finding

Changeable Sheets: the "bridge" from the cm scale of electronics detectors to μm scale of emulsions.

Electronic detector predictions to be confirmed by scanning of CS doublet. Up to 4 bricks ranked in probability are considered for τ research.

Vertex location and topology decay search in the brick

Tracks in the CS are followed upstream until a stopping point is found. Vertex reconstruction by apposite algorithms. Search of decay topologies (e.g. large impact parameters IP).

Full MC simulation of 0 μ and 1 μ samples. Data/MonteCarlo in reasonable agreement.

Validation with the CNGS charm events sample

Φ

 D, Λ

Charmed hadrons produced in v_{μ}^{cc} events (μ at the primary vertex) Charm and τ decays are topologically similar. Test for: reconstruction efficiencies, description of kinematic variables, charm background.

$v_{_\tau}$ candidate identification

The brick is a complete stand-alone detector:

- Neutrino interaction vertex and decay topology reconstruction
- Measurement of charged particles' momenta by Multiple Coulomb Scattering (20-30% resolution)
- e/γ separation and energy measurement

Kinematical cuts to increase S/B ratio:

For candidate events, Track Follow Down (TFD) procedure: All reconstructed event tracks followed from brick to brick,

- to enhance µ-identification (99%)
- improve μ /h discrimination (range measurement and nuclear interaction detection)

$v_{\parallel} \rightarrow v_{-}$ background characterization

 μ^+

e⁺

h⁺

Monte Carlo simulation benchmarked on control samples.

CC with charm production (all μ⁻,e⁻ channels) IF the primary $v_{\mu,e}$ lepton is not identified and the daughter charge is not (or incorrectly) measured **Hadronic interactions** ν Background for $\tau \rightarrow h$ μ ν μ Large angle muon

scattering Background for $\tau \rightarrow \mu$

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured OPERA charm events.

Reduced by "track follow down" procedure and large angle scanning

FLUKA + pion test beam data Reduced by large angle scanning and nuclear fragment search

Measurements in the literature (Lead form factor), improved MC simulations

V

v_{T} events observed in OPERA

Fifth v_{τ} candidate: discovery of v_{τ} appearance

$v_{\mu} \rightarrow v_{\tau}$ oscillation analysis results

Decay	Expected background				avpacted signal	
channel	Charm	Had. Re-interaction	Large µ scattering	Total	expected signal events $\Delta m^2 =$ 2.44×10 ⁻³ eV ²	Observed events
$\tau \rightarrow 1h$	0.017±0.003	0.022±0.006	-	0.04±0.01	0.52±0.10	3
$\tau \rightarrow 3h$	0.17±0.03	0.003±0.001	-	0.17±0.03	0.73±0.14	1
$\tau \rightarrow \mu$	0.004±0.001	-	0.0002±0.0001	0.004±0.001	0.61±0.12	1
$\tau \rightarrow e$	0.03±0.01	-	-	0.03±0.01	0.78±0.16	0
Total	0.22±0.04	0.02±0.01	0.0002±0.0001	0.25±0.05	2.64±0.53	5

Probability to be explained by background fluctuation $p = 1.1 \times 10^{-7}$

No oscillation hypothesis excluded at 5.1 σ

 $\Delta m_{23}^{2} = 3.3 \text{ x } 10^{-3} \text{ eV}^{2}$ with a 90% confidence interval [2.0, 5.0] x 10⁻³ eV² (assuming full mixing)

Probability of observing \geq 5 candidates (2.9 S+B events expected): 17% Frequency of configurations being less probable than the observed one: 6.4%

A v event with 3 vertices: description

Invariant masses at both secondary vertices larger than 1 GeV.

A v event with 3 vertices: analysis

Vertex 2 can be a charmed particle decay. Vertex III not classified as v_{τ} interaction by standard selection cuts.

Dedicated simulations and Artificial Neural Network (ANN) analysis have been performed.

Event classified as v_{τ} interaction with charm production (first topology of this kind). 3.5 σ CL with respect to bkg only hypothesis.

- Full data sample (2008-2012)
- Use of electronic detector data only and separation between CC and NC like events

NC-like/CC-like ratio vs. E_{tt}

To reduce systematic effects coming from the beam uncertainty (no near detector), NC like over CC like ratio is used

Fit using NC-like/CC-like ratio in which all mixing parameters are fixed to the PDG values but Δm_{32}^2

 χ^2 in NC-like/CC-like ratio fit Xs 86 4σ FLIMINAT 82 80 3σ 78 $\chi^2/n_{\rm d.o.f} = 0.98$ 76 74 2σ 72 1σ 70 68 – 0.002 0.003 0.004 0.005 0.006 0.001 $\Delta m_{23}^2 / eV^2$

reweighting MC according to oscillation probability and minimizing χ^2 between MC and data

systematics under study

⇒Preliminary measurement of Δm_{32}^2 ⇒consistent with the world average and the internal OPERA appearance results

 $v_{\mu} \rightarrow v_{\tau}$: preliminary results on sterile v

Update of JHEP 1506 (2015) 069

Cosmic rays: $R = N_{\mu^+}/N_{\mu^-}$

P (primary) air nucleus

- Highest-E region reached!
- opposite magnet polarities runs

 → lower systematics
- Strong reduction of the charge ratio for multiple muon events

1 μ I.377 ± 0.006 Multi-μ I.098 ± 0.023

- Results compatible with a simple π -K model
- No significant contribution of the prompt component up to $E_{\mu} \cos \theta * \sim 10 \text{ TeV}$
- Validity of Feynman scaling in the fragmentation region up to $E_{\mu} \sim 20 \text{ TeV} (E_{N} \sim 200 \text{ TeV})$

$$\phi_{\mu^{\pm}} \propto \frac{a_{\pi} f_{\pi^{\pm}}}{1 + b_{\pi} \mathcal{E}_{\mu} \cos \theta / \epsilon_{\pi}} + R_{K\pi} \frac{a_{K} f_{K^{\pm}}}{1 + b_{K} \mathcal{E}_{\mu} \cos \theta / \epsilon_{K}}$$

Conclusions

- 1.8 x 10²⁰ pot by CNGS from 2008-12 (80% of design).
- 5 v_{τ} candidates so far with 0.25 expected background events.
- No oscillation hypothesis excluded at 5.1σ .
- In addition to the standard analysis, observed also a τ neutrino interaction with charm production.
- Study on $v_{\mu} \rightarrow v_{e}$ sub-dominant oscillation channel in progress.
- First results from v_{μ} disappearance analysis shown.
- Sterile neutrino: limits on $|U_{u4}|^2 |U_{\tau4}|^2$ from v_{τ} appearance results.
- Cosmic ray physics: atmospheric $\mu^{\scriptscriptstyle +}\!/\mu^{\scriptscriptstyle -}$ in the highest energy region to date.