

Searches for Heavy Neutrinos and Lepton Number Violation using the CMS at the LHC

Un-ki Yang Seoul National University On behalf of the CMS collaboration

NuFact 2016, Aug. 21-26, 2016, ICISE @ Quy Nhon

Neutrino Oscillation

- Lepton Number Violation (LNV)
 Non-zero neutrino mass
- Solution > Is the Charged Lepton Number Violated ? $\mu \rightarrow e_{\gamma}$

> Does the righted-handed N exist?

Physics Beyond SM

- > SM induced LNV for charged lepton is so small, $Br(\mu \rightarrow e\gamma) \sim 10^{-50}$, many news physics models can enhance this decay
 - RPV SUSY, Extra-dim, GUT, models with Majorana N etc
 - Look for $\mu \rightarrow e_{\gamma}$, and Z, H, Z' $\rightarrow e_{\mu}$, $\mu \tau$
- > A natural way to generate LNV and neutrino mass
 - Introduce an effective operators to the SM

$$\frac{Y_L}{\Lambda_L}LLH^2 + \frac{Y_B}{\Lambda_B^2}qqqL + \dots$$

Seesaw Mechanism (type I, II, III)

• Left-Right Symmetry model offers the Seesaw scale and heavy neutrinos $SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L} \quad M_{W_R} \gg M_{W_L}$

Searches for the LNV at the LHC

> Z decay, Z \rightarrow e μ

- Neutrino oscillation predicts LNV, but $Br(Z \rightarrow e\mu) < 10^{-60}$
- Indirect from $\mu \rightarrow 3e$: Br(Z $\rightarrow e\mu$)<5x10⁻¹³
- Can be enhanced by the BSM
- Searches for heavy states
 - RPV SUSY sneutrino
 - Quantum Black Hole with extra-dim
- > Higgs decay, $H \rightarrow e/\mu\tau$
 - $B(H \rightarrow e\mu) < O(10^{-8})$ from $\mu \rightarrow e\gamma$
 - $B(H \rightarrow e/\mu\tau) < O(10\%)$ from $\mu\tau \rightarrow e/\mu\gamma$
 - Direct Search promising

4

Searches for Heavy N at the LHC

> Type 1:

- Resonant production via s-channel W* or W(real)
- probe light-heavy mixing
- Majorana: 50% same-sign
- Cross section depends
- on |V_{IN}|² and m_N

> LRSM:

- a resonance W_R production
- TeV scale gauge bosons (2W_R and Z')

Signal: 2 leptons + 2 jets + no p_T

Heavy N productions

> Type 1:

- Resonant production via s-channel W* or W(real)
- probe light-heavy mixing
- Majorana: 50% same-sign)
- Cross section depends
- on |V_{IN}|² and m_N

> LRSM:

- a resonance W_R production
- TeV scale gauge bosons (2W_R and Z')

> Type III:

• Production of Σ^0 , $\Sigma^{+/-}$ via s-channel W*

Signal: 2 leptons + 2 jets + no p_T

Use the Large Hadron Collider!

Detectors and Data

- High precision multipurpose detectors
- Excellent electron, muon, photon, jets IDs with good energy resolution
- Impressive data-taking

Before Searching for New Physics

CMS Preliminary

> Impressive agreements with the SM

Results @ NuFact15

> Z \rightarrow e μ

- The most strong direct limit: Br(Z→eµ) < 7.3x10⁻⁷
- ≻ Heavy state → eµ
 - τ sneutrino: m < 1.28 (2.11) TeV</p>

for $\lambda_{132} = \lambda_{311} = 0.01 \ (\lambda_{132} = 0.05, \lambda_{311} = 0.1)$

Black hole: m< 1.99-3.66 TeV for n_{extra_dim}=0-6

> H→μτ

- 2.4 σ deviation from the SM observed
- Limits on branching ratio
- & LFV Yukawa coupling *Br*(H→μτ) <1.51% (0.75% expected)

Ge

10

0.1.5 Data/Bkg 0.5

PLB749, 347 (2015)

Update on $H \rightarrow \mu \tau$

- > A small 2.4s excess @ 8 TeV data
- > Analyze the 2015 13 TeV data
 - 2 channels: $e/\mu \tau(e/\mu)$, $e/\mu \tau(had)$ with 3 categories (0, 1, 2 jets)
 - Large bkgds: large systematics
 - Template fits to the collinear mass distribution

Update Results on $H \rightarrow \mu \tau$

HIG-16-005

Set on the upper limits on Br(H→μτ)<1.20% (1.62% expected): not reached the Run 1 sensitivity

Search for heavy $X \rightarrow e\mu$

- > RPV SUSY with τ sneutrino as LSP
 - Iso. high pT e/μ with 35/53 Gave
 - e-µ pair with highest invariant mass
 - Shape based limits:
 - RPV: 3.3 TeV, QBH: 4.5 TeV (n=6)

Searches in Type I Seesaw

Final states: dileptons + 2 jets + no missing transverse energy (MET)

- \succ Lepton Pt > 20, 15 GeV leton pt cuts,
- Jets Pt> 20 Gave, no MET (<30 Gave)</p>

Use only same sign leptons channels

Challenges:

- Small signal cross sections but large bkgds from QCD jets
- Understanding of Z+jets bkgd, but with a lepton-charge flip

Backgrounds: ee/µµ/eµ+2 jets

JHEP 1507 (2015) 162

Results @ CMS

Results on Mixing JHEP 1507 (2015) 162

PLB 748, 144 (2015)

LHC provides the world best limits on $|V_{uN}|^2$ for m_N>90 GeV The first direct limit on $|V_{eN} V_{uN}^*|$ for $m_N > 40 \text{ GeV}$

Searches in the LRSM

Same Final state as type I but very different kinematics

CMS Baseline Selection:

• 2 Isolated* leptons (e/mu),

No charge requirement on leptons.

- Lepton 1/2 pt > 60/40 GeV,
- Njet ≥ 2 *,
- M(II) > 200 GeV,

(remove SM backgrounds),

M(IIjj) (i.e m(W_R)) > 600 GeV.

Challenges:

- For m_N<<m_{WR}, jets and lepton from N decays overlap
 → standard isolation will kill signals
- Same challenges as Type I in terms of bkgds

Results @ CMS

Di-muon channel

Di-electron channel

EPJ C74 (2014) 3149

≻ A local significance, 2.8σ effect
≻ Consistency with the LRSM?

Limits in the LRSM

EPJ C74 (2014) 3149

> What about the results from ATLAS?

JHEP 1507 (2015) 162

Invariant mass (Iljj)

No excess in ee channel (SS)
OS channel?

Searches at 13 TeV

- A 2.8σ excess in eejj channel but no excess in dimuon channel
 - A composite model of lepton and quarks with contact interaction, Λ:
 arXiv:1508.02277 [hep-ph]
 - Excited µ state heavier than excited e state

Searches at 13 TeV

Di-electron channel

- ▷ p_T(e): 110, 35 GeV
- > *m*(ee or μμ)>300 GeV,

Di-muon channel

p_T(μ)>53, 30 GeV >=1 fat jet with p_T(jet)> 190 GeV

- > Upper limits at 95% CL on the cross section *Br
- Exclude A Composite Majorana Neutrino of mass up to 4.35 (e), 4.50(µ) TeV

Searches in **TT** channel

- A 2.8σ excess in eejj channel but no excess
 in dimuon channel
 - Any broad excess in 3rd generation?
- > Searches in $\tau\tau$:
 - All hadronic channel, τ(h)τ(h) using 2.1 fb⁻¹ at 13 TeV
 →Largest branching ratio, but a large QCD tau-fake
 - Lepton+hadronic channel: τ(e)τ(h), τ(μ)τ(h)
 → Relatively clean events, but a small branching ratio,
 → thus use 12.9 fb⁻¹ at 13 TeV

Results in τ(I)τ(h) channel

2016 data: 12.9 fb⁻¹

- > $p_T(e \text{ or } \mu) > 50 \text{ GeV}, p_T(\tau_h) > 60 \text{ GeV}, \text{MET} > 50 \text{ GeV}$
- > $m(e\tau_h \text{ or } \mu \tau_h) > 150 \text{ GeV, } m(j\tau_h) > 250 \text{ GeV,}$
- > 2 jets with p_T>50 GeV

EXO-16-023

 $S_{\mathrm{T}} = p_T(\ell) + p_T(\tau_{\mathrm{h}}) + p_T(jet_1) + p_T(jet_2) + E_{\mathrm{T}}^{\mathrm{miss}}$

No excess in data, exclude W_R up to 3.2 TeV

Type III Results @ CMS

(3 or 4 leptons)

2015 data: 2.3 fb⁻¹

Summary

- > Neutrino Oscillations attracts many interesting searches at the LHC
 - Lepton Number Violation decays: Z, H, Z' \rightarrow e μ & H \rightarrow e/ $\mu\tau$
 - Searches for heavy neutrinos
 - Test various Seesaw models and LRSM to explain small ν mass can tested:
- CMS has searched for the LNV decays and heavy neutrinos, but with no excess seen in data
 - $H \rightarrow \mu \tau$: not confirmed by the first 13 TeV data
 - RPV sneutrino > 3.3 TeV, QBH>4.5 TeV (n=6)
 - Upper limits are set on $|V_{\text{IN}}|^2$, exclude W_{R} mass up to 4.35 TeV (e), 4.5 TeV (μ) and 3.2 TeV (τ)
- Searches will be explored using the full 13 TeV data from many different channels