Test of lepton flavour universality at LHCb Quy Nhon, NuFact 2016

Federica Lionetto on behalf of the LHCb collaboration

University of Zurich

23 August 2016

Outline

Motivation

LHCb

The R_{D^*} and R_K measurements

The $B^0 o K^{*0} \mu^+ \mu^-$ and $B^0 o K^{*0} e^+ e^-$ decays

Conclusions and future prospects

The $b \rightarrow c \tau^- \overline{\nu_\tau}$ transition

- At tree level in the Standard Model
- However, measured to a precision of $\mathcal{O}(20\%)$ in the au final state
- Sensitive to NP preferentially coupling to 3rd generation fermions, e.g. Higgs-like charged scalars or W' bosons

Suppressed in the Standard Model

- $\hfill\square$ no FCNC at tree level
- sensitive to New Physics contributions (including LFNU)

Suppressed in the Standard Model

- $\hfill\square$ no FCNC at tree level
- □ sensitive to New Physics contributions (including LFNU)

Suppressed in the Standard Model

 $\hfill\square$ no FCNC at tree level

□ sensitive to New Physics contributions (including LFNU)

- Suppressed in the Standard Model
 - $\hfill\square$ no FCNC at tree level
 - sensitive to New Physics contributions (including LFNU)
- Model-independent description
 - \implies effective field theory
- Factorisation between
 - □ short-range contributions, Wilson coefficients $C_i^{(\prime)}$
 - □ long-range contributions, local operators $\mathcal{O}_i^{(\prime)}$

$$\mathcal{H}_{\rm eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \left(\mathcal{C}_i \mathcal{O}_i + \mathcal{C}_i' \mathcal{O}_i' \right)$$

 $B^{0} \rightarrow K^{*0}\mu^{+}\mu^{-} \text{ differential decay width}$ Annu. Rev. Nucl. Part. Sci. 65 (2015) 113 $F_{ec}(GeV) \xrightarrow{2} \qquad 1$ $QCDF \leftarrow photon \qquad pole \qquad broad c\overline{c}$ $0^{7} - 0_{9} \qquad tresonances \qquad 0$ $0^{7} - 0_{9} \qquad tresonances \qquad 0$ $0^{7} - 0_{9} \qquad tresonances \qquad 0$ $0^{7} - 0_{9} \qquad tresonances \qquad 0$

The LHCb detector

pp collisions at 7 – 13 TeV, pseudorapidity 2 < η < 5

The LHCb experiment

- Tailored for heavy flavour physics at the LHC
- Ideal for studying rare b-hadron decays
 - excellent

vertex and momentum

resolution

- good PID capabilities
- Run I
 - \square 3 fb⁻¹ at 7 8 TeV
 - □ large $b\bar{b}$ production cross section $\sigma_{b\bar{b}} = (75.3 \pm 14.1) \ \mu b$ in acceptance

Run II

- \square 1 fb⁻¹ at 13 TeV already collected
- \Box increased $\sigma_{b\bar{b}}$

The LHCb experiment

- Tailored for heavy flavour physics at the LHC
- Ideal for studying rare b-hadron decays
 - excellent

vertex and momentum

resolution

good PID capabilities

Run I

```
\square 3 fb<sup>-1</sup> at 7 – 8 TeV
```

□ large $b\bar{b}$ production cross section $\sigma_{b\bar{b}} = (75.3 \pm 14.1) \ \mu b$ in acceptance

Run II

□ 1 fb⁻¹ at 13 TeV already collected □ increased $\sigma_{b\bar{b}}$

$$R_{D^*} = rac{\overline{B^0} o D^{*+} au^- \overline{
u_ au}}{\overline{B^0} o D^{*+} \mu^- \overline{
u_\mu}}$$

6 of 25

The R_{D^*} measurement

- Branching fraction ratio of $\overline{B^0} \to D^{*+} \tau^- \overline{\nu_{\tau}}$ to $\overline{B^0} \to D^{*+} \mu^- \overline{\nu_{\mu}}$
 - $\square R_{D^*} \stackrel{\text{SM}}{=} 0.252 \pm 0.003$
 - previously measured by BaBar and Belle

Experiment	R_{D^*}	SM discrepancy
BaBar*	$0.332 \pm 0.024 \pm 0.018$	2.7 σ
Belle**	$\begin{array}{c} 0.293 \pm 0.038 \pm 0.015 \\ 0.302 \pm 0.030 \pm 0.011 \end{array}$	1.8 σ 1.6 σ

* Phys. Rev. Lett. 109, 101802 (2012), Phys. Rev. D 88, 072012 (2013)

** Phys. Rev. D 92, 072014 (2015), arXiv:1607.07923, Belle-CONF-1602

7 of 25

LHCb analysis strategy

- $D^{*+} o D^0 \pi^+$, with $D^0 o K^- \pi^+$, and $\tau^- o \mu^- \overline{
 u_\mu} \nu_\tau$
- 3ν final state

Kinematic information on B_{tag} at B factories, but at LHCb?

- B flight direction given by PV and SV
- \square approximated B momentum along the beam $\Longrightarrow p_z = (m/m_{rec})p_{rec,z}$

Signal and normalisation channels with identical visible final-state topologies

8 of 25

Yields determination

Exploit

- $\Box \ au \mu$ mass difference
- $\hfill\square$ presence of extras νs in the signal channel
- Evaluate E^*_μ , $m^2_{\rm miss}=(p^\mu_B-p^\mu_D-p^\mu_\mu)^2$, and $q^2=(p^\mu_B-p^\mu_D)^2$ in the B rest frame
- Background from
 - □ partially reconstructed decays $B \rightarrow D^{*(*)} l\nu, B \rightarrow D^* DX$
 - combinatorial
- ML fit using template distributions from control samples and MC
- Simultaneous fit to several background-enriched samples (data-driven)

Results for R_{D^*}

- First measurement of $b \rightarrow \tau$ decays at hadron colliders
- \blacksquare Compatible with the SM at 2.1 σ

$$R_{D^*} = 0.336 \pm 0.027(\text{stat}) \pm 0.030(\text{syst})$$

Combined results for R_D and R_{D^*}

Excess w.r.t. SM prediction observed by several experiments
 □ corresponding to 4 σ according to latest HFAG average

 $R_{K} = rac{B^+
ightarrow K^+ \mu^+ \mu^-}{B^+
ightarrow K^+ e^+ e^-}$

12 of 25

The R_K measurement

- Ratio of branching fractions of $B^+ \to K^+ \mu^+ \mu^-$ and $B^+ \to K^+ e^+ e^-$
 - $\square R_{K} \stackrel{\text{SM}}{=} 1 + \mathcal{O}(10^{-2})$
 - \Box sensitive to new scalar and pseudoscalar interactions or Z' bosons
 - previously measured by BaBar and Belle

Experiment	q^2 (GeV ²)	R _K
BaBar*	0.1 - 16.0 0.1 - 8.12 > 10.11	$\begin{array}{c} 1.00^{+0.31}_{-0.25}\pm 0.07\\ 0.74^{+0.40}_{-0.31}\pm 0.06\\ 1.43^{+0.65}_{-0.44}\pm 0.12\end{array}$
Belle**	0.00 - 16.0	$1.03 \pm 0.19 \pm 0.06$

- * Phys. Rev. D 86 (2012) 032012
- ** Phys. Rev. Lett. 103 (2009) 171801

13 of 25

The R_K measurement at LHCb

- $q^2 \in [1, 6] \text{ GeV}^2/c^4$
- Double ratio with respect to the resonant decay mode $B^+
 ightarrow J/\psi K^+$

The $R_{\mathcal{K}}$ measurement at LHCb

- $q^2 \in [1, 6] \text{ GeV}^2/c^4$
- Double ratio with respect to the resonant decay mode $B^+ o J/\psi K^+$

14 of 25

Results for R_K

- Distributions affected by
 - trigger
 - bremsstrahlung photons
- Most precise result to date
- Compatible with the SM at 2.6 σ

 $R_K = 0.745_{-0.074} (\text{stat}) \pm 0.050 (\text{syst})$

 Fundamental for future measurements of decays with electrons in the final state

Results for R_K

 $R_{\rm K} = 0.745^{+0.090}_{-0.074}({
m stat}) \pm 0.036({
m syst})$

 Fundamental for future measurements of decays with electrons in the final state Look at muons and electrons separately...

16 of 25

The $B^0 \rightarrow K^{*0} \mu \mu$ decay

• Angular analysis in terms of $\vec{\Omega} = (\theta_I, \, \theta_k, \, \phi)$ and $q^2 = m_{\mu\mu}^2$

LHCb analysis strategy

Determine

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{d\vec{\Omega}dq^2} = \frac{9}{32\pi} [\frac{3}{4}(1-F_L)\sin^2\theta_k + F_L\cos^2\theta_k + \frac{1}{4}(1-F_L)\sin^2\theta_k\cos2\theta_\ell - F_L\cos^2\theta_k\cos2\theta_\ell + S_3\sin^2\theta_k\sin^2\theta_\ell\cos2\theta_\ell - S_4\sin2\theta_k\sin2\theta_\ell\cos2\theta_\ell + S_5\sin2\theta_k\sin^2\theta_\ell\cos2\phi + S_4\sin2\theta_k\sin2\theta_\ell\cos\phi + S_5\sin2\theta_k\sin2\theta_\ell\cos\phi + S_5\sin2\theta_k\sin\theta_\ell\cos\phi + \frac{4}{3}A_{FB}\sin^2\theta_k\cos\theta_\ell + S_7\sin2\theta_k\sin2\theta_\ell\sin\phi + S_8\sin2\theta_k\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_k\sin^2\theta_\ell\sin2\phi]$$

with F_L , A_{FB} , $S_i = f(C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)})$, combinations of K^{*0} decay amplitudes

Theoretical uncertainty on hadronic form factors \implies reduced by moving to optimised observables, e.g. $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$

arXiv:1305.4808

LHCb analysis strategy

• Determine $\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{d\bar{\Omega}dq^2} = \frac{9}{32\pi} [\frac{3}{4}(1-F_L)\sin^2\theta_k + F_L\cos^2\theta_k + \frac{1}{4}(1-F_L)\sin^2\theta_k\cos^2\theta_\ell - F_L\cos^2\theta_k\cos^2\theta_\ell + \frac{5}{3}\sin^2\theta_k\sin^2\theta_\ell\cos^2\theta_\ell - F_L\cos^2\theta_k\cos^2\theta_\ell + \frac{5}{3}\sin^2\theta_k\sin^2\theta_\ell\cos^2\phi + \frac{5}{4}\sin^2\theta_k\sin^2\theta_\ell\cos\phi + \frac{4}{3}A_{FB}\sin^2\theta_k\cos\phi + \frac{4}{5}F_{5}\sin^2\theta_k\sin^2\theta_\ell\sin\phi + \frac{5}{8}\sin^2\theta_k\sin^2\theta_\ell\sin\phi + \frac{5}{9}\sin^2\theta_k\sin^2\theta_\ell\sin\phi + \frac{5}{9}\sin^2\theta_\ell\sin^2\theta_\ell\sin^2\theta_\ell$

with F_L , A_{FB} , $S_i = f(C_7^{(\prime)}, C_9^{(\prime)}, C_{10}^{(\prime)})$, combinations of K^{*0} decay amplitudes

Theoretical uncertainty on hadronic form factors \implies reduced by moving to optimised observables, e.g. $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$

arXiv:1305.4808

Results for $B^0 \to K^{*0} \mu^+ \mu^-$

- Analysis in 8 bins of $q^2 \in [0.1, 19.0]$ GeV $^2/c^4$, $K^{*0}
 ightarrow K^+\pi^-$
- Most angular observables compatible with SM predictions
- Tension observed in P'₅
 - $\hfill\square$ global fit at 3.4 σ from the SM prediction
 - compatible with previous LHCb and recent Belle measurements

- Measurements in favour of a reduced C₉
- Possible link to LFNU
 - \implies arXiv:1605.03156, JHEP 12 (2014) 131, Phys. Rev. D 90, 054014 (2014)
- Can explain R_{D^*} anomaly, assuming W' and $Z' \implies arXiv:1506.01705$

20 of 25

Compare to $B^0 o K^{*0} e^+ e^-$...

21 of 25

The $B^0 ightarrow K^{*0} e^+ e^-$ decay

- Simplified formalism, 4 angular observables
 - \Box K^{*0} longitudinal polarisation fraction F_L
 - \Box transverse asymmetries $A_T^{(2)}$, A_T^{Im} and A_T^{Re}
- Experimentally more challenging
 - statistics
 - resolution
 - trigger
 - bremsstrahlung photons
- $q^2 \in [0.002, 1.120] \text{ GeV}^2/c^4$
 - photon polarisation
- $K^{*0} \rightarrow K^+ \pi^-$
- ML fit of $\vec{\Omega}$ and $m_{K\pi ee}$

The $B^0 ightarrow K^{*0} e^+ e^-$ decay

- Simplified formalism, 4 angular observables
 - \Box K^{*0} longitudinal polarisation fraction F_L
 - \Box transverse asymmetries $A_T^{(2)}$, A_T^{Im} and A_T^{Re}
- Experimentally more challenging
 - statistics
 - resolution
 - trigger
 - bremsstrahlung photons
- *q*² ∈ [0.002, 1.120] GeV²/*c*⁴
 □ photon polarisation
- $K^{*0} \rightarrow K^+ \pi^-$
- ML fit of $\vec{\Omega}$ and $m_{K\pi ee}$

Results for $B^0 \rightarrow K^{*0} e^+ e^-$

$$\begin{array}{rcl} F_L &= +0.16 \pm 0.06 \pm 0.03 \\ A_T^{(2)} &= -0.23 \pm 0.23 \pm 0.05 \\ A_T^{Im} &= +0.14 \pm 0.22 \pm 0.05 \\ A_T^{Re} &= +0.10 \pm 0.18 \pm 0.05 \end{array}$$

$$\begin{array}{ll} F_L & \stackrel{\text{SM}}{=} + 0.10 \substack{+0.11 \\ -0.05} \\ A_T^{(2)} & \stackrel{\text{SM}}{=} + 0.03 \substack{+0.05 \\ -0.04} \\ A_T^{lm} & \stackrel{\text{SM}}{=} (-0.2 \substack{+1.2 \\ -1.2} \atop + 1.2) \times 10^{-4} \\ A_T^{Re} & \stackrel{\text{SM}}{=} -0.15 \substack{+0.04 \\ -0.03} \end{array}$$

Phys. Rev. D 93, 014028 (2016)

In agreement with SM

$$\begin{array}{ll} F_L &= +0.16 \pm 0.06 \pm 0.03 \\ A_T^{(2)} &= -0.23 \pm 0.23 \pm 0.05 \\ A_T^{Im} &= +0.14 \pm 0.22 \pm 0.05 \\ A_T^{Rm} &= +0.10 \pm 0.18 \pm 0.05 \end{array}$$

$$\begin{array}{ll} F_L & \stackrel{\text{SM}}{=} + 0.10 \stackrel{+ 0.11}{_{- 0.05}} \\ A_T^{(2)} & \stackrel{\text{SM}}{=} + 0.03 \stackrel{+ 0.05}{_{- 0.04}} \\ A_T^{lm} & \stackrel{\text{SM}}{=} (-0.2 \stackrel{+ 1.2}{_{- 1.2}}) \times 10^{-4} \\ A_T^{Re} & \stackrel{\text{SM}}{=} -0.15 \stackrel{+ 0.04}{_{- 0.03}} \end{array}$$

Phys. Rev. D 93, 014028 (2016)

In agreement with SM

Results for $B^0 \rightarrow K^{*0} e^+ e^-$

$$\begin{array}{ll} F_L &= +0.16 \pm 0.06 \pm 0.03 \\ A_T^{(2)} &= -0.23 \pm 0.23 \pm 0.05 \\ A_T^{Im} &= +0.14 \pm 0.22 \pm 0.05 \\ A_T^{Rm} &= +0.10 \pm 0.18 \pm 0.05 \end{array}$$

$$\begin{array}{ll} F_L & \stackrel{\text{SM}}{=} +0.10^{+0.11}_{-0.05} \\ A_T^{(2)} & \stackrel{\text{SM}}{=} +0.03^{+0.05}_{-0.04} \\ A_T^{lm} & \stackrel{\text{SM}}{=} (-0.2^{+1.2}_{-1.2}) \times 10^{-4} \\ A_T^{Re} & \stackrel{\text{SM}}{=} -0.15^{+0.04}_{-0.03} \end{array}$$

Phys. Rev. D 93, 014028 (2016)

...and consistent with $B^0 o K^{*0} \mu^+ \mu^-$ anomaly, since contribution from \mathcal{C}_7 only

23 of 25

Future prospects

- *R_{K*}*
 - $\hfill\square$ analogous to ${\it R_{K}}$ in the ${\it B^{0}} \rightarrow {\it K^{*0}} \ell^{+} \ell^{-}$ decay mode
 - \Box larger q^2 range
- R_{ϕ} , R_D , update for R_{D^*}
- S-wave scalar components $B^0 \to K^+\pi^-\mu^+\mu^-$ and $B^0 \to K^+\pi^-e^+e^-$
- Update for angular analyses of $B^0 \to K^{*0} \ell^+ \ell^-$
- Asymmetry measurements in angular observables,

e.g. $e-\mu$ asymmetry in P_5'

Conclusions

- Search for NP in the $b \rightarrow c \tau^- \overline{\nu_\tau}$ transition
 - \Box excess of 4 σ w.r.t. SM prediction observed in R_{D^*}
 - \square might be a hint to LFU violation between μ and τ
- Search for NP in the $b \rightarrow s \ell^+ \ell^-$ transition
 - □ hints of tension with SM predictions observed in R_{K} and $B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$
 - possible coherent pattern in terms of C_9 (and possibly C_{10})
- Update with Run II statistics
- Further measurements foreseen at LHCb, stay tuned!

Thanks for the attention!

25 of 25

Spare slides

25 of 25

Motivation

- Lepton flavour conservation/universality due to SM accidental symmetry
- Any contrary evidence would be a clear hint of NP
 - neutrino oscillations
 - contribution from rare decays measurements at LHCb

Effective Hamiltonian approach

- Combine results from several decays in order to
 - classify NP contributions
 - perform consistency checks

The R_{D^*} measurement at LHCb

- Background-enriched data samples by MVA applied on tracks (threshold on MVA output)
- Control samples for partially reconstructed decays
 - $\square D^{*+}\mu^{-}\pi^{-}$ (one track above threshold)
 - $\Box D^{*+}\mu^{-}\pi^{+}\pi^{-}$ (two tracks above threshold)
 - $\Box D^{*+}\mu^{-}K^{\pm}$ (one track above threshold identified as K^{\pm})
- Efficiency from simulation validated against data

Fit in

$$\square$$
 4 bins of $q^2 \in [-0.4, 12.6]$ GeV 2

$$imes$$
 30 bins of $E^*_\mu \in [100, 2500]$ MeV

$$\square$$
 40 bins of $m^2_{
m miss} \in [-2, 10] \; {
m GeV}^2$

The R_{D^*} measurement at LHCb

The R_{D^*} measurement at LHCb

 R_K

The R_K measurement at LHCb

F. Lionetto - Test of lepton flavour universality at LHCb - NuFact 2016

The
$$B^0
ightarrow K^{*0} \mu^+ \mu^-$$
 decay

• Contribution due to S-wave decay $B^0 \to K^+ \pi^- \mu^+ \mu^-$

• ML fit of $\vec{\Omega}$ and $m_{K\pi\mu\mu}$

The $B^0 ightarrow {\cal K}^{*0} \mu^+ \mu^-$ decay

- Most angular observables compatible with SM predictions
- However, tension in P'_5
 - \square data fit at 3.4 σ from SM
 - \square compatible with the measurement based on 1 fb⁻¹

The
$$B^0
ightarrow K^{*0} \mu^+ \mu^-$$
 decay

Invariant mass distributions for control and signal channels

Integrated over the full q² range

10 of 21

The
$$B^0 o K^{*0} \mu^+ \mu^-$$
 decay

ML fit to the data

11 of 21

The
$$B^0
ightarrow K^{*0} \mu^+ \mu^-$$
 decay

ML fit to the data

12 of 21

The
$$B^0
ightarrow K^{*0} \mu^+ \mu^-$$
 decay

- χ^2 fit to F_L , A_{FB} , and $S_3 S_9$ obtained from the ML fit to the data
- Best fit point at $\Delta \operatorname{Re}(\mathcal{C}_9) = -1.04 \pm 0.25$
- Significance of 3.4 σ

The
$$B^0 \rightarrow K^{*0} e^+ e^-$$
 decay

$$\frac{1}{d(\Gamma+\bar{\Gamma})/dq^2} \frac{d^4(\Gamma+\bar{\Gamma})}{dq^2 d\cos\theta_\ell d\cos\theta_\ell d\phi} = \frac{9}{16\pi} [\frac{3}{4} (1-F_L) \sin^2\theta_k + F_L \cos^2\theta_k + (\frac{1}{4} (1-F_L) \sin^2\theta_k - F_L \cos^2\theta_k) \cos 2\theta_\ell + \frac{1}{2} (1-F_L) A_T^{(2)} \sin^2\theta_k \sin^2\theta_\ell \cos 2\tilde{\phi} + (1-F_L) A_T^{Re} \sin^2\theta_k \cos\theta_\ell + \frac{1}{2} (1-F_L) A_T^{Re} \sin^2\theta_k \sin^2\theta_\ell \sin 2\tilde{\phi}]$$

with

 $\begin{array}{rcl} |A_0|^2 &= |A_{0L}|^2 + |A_{0R}|^2 \\ |A_{\parallel}|^2 &= |A_{\parallel L}|^2 + |A_{\parallel R}|^2 \\ |A_{\perp}|^2 &= |A_{\perp L}|^2 + |A_{\perp R}|^2 \end{array}$

$$egin{array}{lll} A_T^{(2)}(q^2 o 0) &= rac{2\mathcal{R}e(C_TC_T^{\prime*})}{|C_T|^2+|C_T^{\prime}|^2} \ A_T^{Im}(q^2 o 0) &= rac{2\mathcal{I}m(C_TC_T^{\prime*})}{|C_T|^2+|C_T^{\prime}|^2} \end{array}$$

Local operators

$$\begin{array}{lll} \mathcal{O}_{7} &=& \frac{m_{b}}{e}\bar{s}\sigma^{\mu\nu}P_{R}bF_{\mu\nu}\,, & \mathcal{O}_{7}^{\prime} &=& \frac{m_{b}}{e}\bar{s}\sigma^{\mu\nu}P_{L}bF_{\mu\nu}\\ \mathcal{O}_{8} &=& g_{s}\frac{m_{b}}{e^{2}}\bar{s}\sigma^{\mu\nu}P_{R}T^{a}bG_{\mu\nu}^{a}\,, & \mathcal{O}_{8}^{\prime} &=& g_{s}\frac{m_{b}}{e^{2}}\bar{s}\sigma^{\mu\nu}P_{L}T^{a}bG_{\mu\nu}^{a}\\ \mathcal{O}_{9} &=& \bar{s}\gamma_{\mu}P_{L}b\bar{\ell}\gamma^{\mu}\ell\,, & \mathcal{O}_{9}^{\prime} &=& \bar{s}\gamma_{\mu}P_{R}b\bar{\ell}\gamma^{\mu}\ell\\ \mathcal{O}_{10} &=& \bar{s}\gamma_{\mu}P_{L}b\bar{\ell}\gamma^{\mu}\gamma_{5}\ell\,, & \mathcal{O}_{10}^{\prime} &=& \bar{s}\gamma_{\mu}P_{R}b\bar{\ell}\gamma^{\mu}\gamma_{5}\ell \end{array}$$
(1)

$$\mathcal{O}_{\rm S} = \bar{s} P_R b \bar{\ell} \ell, \qquad \mathcal{O}_{\rm S}' = \bar{s} P_L b \bar{\ell} \ell \mathcal{O}_{\rm P} = \bar{s} P_R b \bar{\ell} \gamma_5 \ell, \qquad \mathcal{O}_{\rm P}' = \bar{s} P_L b \bar{\ell} \gamma_5 \ell$$

$$(2)$$

$$\mathcal{O}_{\mathrm{T}} = \bar{s}\sigma_{\mu\nu}b\,\bar{\ell}\sigma^{\mu\nu}\ell\,,\quad \mathcal{O}_{\mathrm{T5}} = \bar{s}\sigma_{\mu\nu}b\,\bar{\ell}\sigma^{\mu\nu}\gamma_{5}\ell\tag{3}$$

$$\mathcal{O}_1 = \frac{4\pi}{\alpha_e} \bar{s} \gamma_\mu P_L b \, \bar{c} \gamma^\mu P_L c \,, \quad \mathcal{O}_2 = \frac{4\pi}{\alpha_e} \bar{s} \gamma_\mu P_L c \, \bar{c} \gamma^\mu P_L b \,. \tag{4}$$

16 of 21

17 of 21

18 of 21

19 of 21

20 of 21

21 of 21