Isospin decomposition of the γ^(*)N → N* transitions as input for constructing models of neutrino-induced reactions in the nucleon resonance region

> Hiroyuki Kamano (KEK Theory Center)

> > Collaborators: T.-S. H. Lee (Argonne Natl. Lab.) S. X. Nakamura (Osaka U.) T. Sato (Osaka U.)

NuFact2016, ICISE, Quy Nhon, Vietnam, Aug. 21-27, 2016

Outline

- Background and motivation for studying neutrino-induced reactions
 - Research project at J-PARC Branch of KEK Theory Center [<u>http://nuint.kek.jp/index_e.html</u>]

 ✓ Determining γ^(*) N → N* transition form factors via Dynamical Coupled-Channels (DCC) analysis of e-, γ-, and π-induced meson production reactions in the nucleon resonance region

Why are neutrino-nucleus reactions important?

[see e.g., recent review by Alvarez-Ruso, Hayato, and Nieves, New J. Phys. 16(2014)075015]

Why are neutrino-nucleus reactions important?

[see e.g., recent review by Alvarez-Ruso, Hayato, and Nieves, New J. Phys. 16(2014)075015]

- reliable extraction of neutrino parameters via oscillation experiments
- search for physics beyond the standard model
- understanding dynamics of core-collapse supernovae
 - → Interests relevant to particle physics and astrophysics

Why are neutrino-nucleus reactions important?

[see e.g., recent review by Alvarez-Ruso, Hayato, and Nieves, New J. Phys. 16(2014)075015]

WZ

- reliable extraction of neutrino parameters via oscillation experiments
- search for physics beyond the standard model
- understanding dynamics of core-collapse supernovae
 - → Interests relevant to particle physics and astrophysics
- New source of information for studying the substructure of the nucleon, baryon resonances, and nuclei.
 - provides information totally independent from that obtained with electromagnetic probes
 - → Interests relevant to pQCD, hadron, and nuclear physics

Why are neutrino-nucleus reactions important?

[see e.g., recent review by Alvarez-Ruso, Hayato, and Nieves, New J. Phys. 16(2014)075015]

W W P P

- reliable extraction of neutrino parameters via oscillation experiments
- search for physics beyond the standard model
- understanding dynamics of core-collapse supernovae
 - → Interests relevant to particle physics and astrophysics
- New source of information for studying the substructure of the nucleon, baryon resonances, and nuclei.
 - provides information totally independent from that obtained with electromagnetic probes
 - → Interests relevant to pQCD, hadron, and nuclear physics

Why are neutrino-nucleus reactions important?

[see e.g., recent review by Alvarez-Ruso, Hayato, and Nieves, New J. Phys. 16(2014)075015]

- reliable extraction of neutrino parameters via oscillation experiments
- search for physics beyond the standard model
- understanding dynamics of core-collapse supernovae
 - → Interests relevant to particle physics and astrophysics
- New source of information for studying the substructure of the nucleon, baryon resonances, and nuclei.
 - provides information totally independent from that obtained with electromagnetic probes
 - → Interests relevant to pQCD, hadron, and nuclear physics

Kinematical regions of neutrino-nucleus reactions for accelerator and atmospheric experiments

Relevant kinematical region extends over QE, RES, and DIS !!

 $Ev = O(10^{-1} - 10^{1}) \text{ GeV}$

- Need a reaction model that comprehensively describes the entire kinematical region.
- However, each region is governed by rather different physics mechanisms !!

Kinematical regions of neutrino-nucleus reactions for accelerator and atmospheric experiments

Relevant kinematical region extends over QE, RES, and DIS !!

 $E_v = O(10^{-1} - 10^{-1}) GeV$

- Need a reaction model that comprehensively describes the entire kinematical region.
- However, each region is governed by rather different physics mechanisms !!

Collaboration@J-PARC Branch, KEK Theory Center

Participants:

[QE, RES] H. Kamano, S. Nakamura, T. Sato M. Hirai, S. Kumano, K. Saito [DIS] [EXP] Y. Hayato, M. Sakuda

http://nuint.kek.jp/index_e.html arXiv:1303.6032

A review article will be published in Reports on Progress in Physics.

N*. Δ*

X = πN, ππN, ηN, KΛ, KΣ, ωN, ...

GOAL for RES region: Develop a microscopic model accurately describing exclusive (multi-)meson-production neutrino-nucleus reactions.

- ✓ Higher N* and ∆* productions result in various (multi-)meson productions:
 - X = πN, ππN, ηN, KΛ, KΣ, ωN, …

GOAL for **RES** region:

Develop a microscopic model accurately describing exclusive (multi-)meson-production neutrino-nucleus reactions.

Before going to nuclear target reactions, one has to develop a reliable model *at the nucleon level* !!

 Higher N* and Δ* productions result in various (multi-)meson productions:

```
X = πN, ππN, ηN, KΛ, KΣ, ωN, …
```


Inelastic channels in resonance region

Need developing a reliable reaction model that satisfies multi-channel unitarity including 3-body $\pi\pi N$ channel !!

ANL-Osaka DCC model for meson production reactions in N* and Δ* region

Dynamical Coupled-Channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} dq \ q^{2} V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$\frac{\sigma}{\sigma} \int_{0}^{\sigma} dq \ q^{2} V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$\frac{\sigma}{\sigma} \int_{0}^{\sigma} dq \ q^{2} V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$\frac{\sigma}{\sigma} \int_{0}^{\sigma} dq \ q^{2} V_{a,c}^{(LSJ)}(p_{a}, q; E) G_{c}(q; E) T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

Summing up all possible transitions between reaction channels !!
 (→ satisfies multichannel two- and three-body unitarity)

e.g.)πN scattering

 Momentum integral takes into account off-shell rescattering effects in the intermediate processes.

ANL-Osaka DCC model for meson production reactions in N* and Δ* region

Dynamical Coupled-Channels model [Matsuyama, Sato, Lee, Phys. Rep. 439(2007)193]

$$T_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) = V_{a,b}^{(LSJ)}(p_{a}, p_{b}; E) + \sum_{c} \int_{0}^{\infty} dq \ q^{2}V_{a,c}^{(LSJ)}(p_{a}, q; E)G_{c}(q; E)T_{c,b}^{(LSJ)}(q, p_{b}; E)$$

$$a, b, c = (\gamma^{(*)}N, \pi N, \eta N, [\pi\Delta, \sigma N, \rho N,] K\Lambda, K\Sigma, \omega N, \cdots)$$
Latest published model (8 channels):
HK, Nakamura, Lee, Sato, PRC88(2013)035209
[updated in PRC94(2016)015201]
> Constructed by simultaneous analysis of
 $\cdot \pi N$ scattering (W < 2.3 GeV)
 $\cdot \gamma p \rightarrow \pi N, \eta N, K\Lambda, K\Sigma$ (W < 2.1 GeV)
 $\cdot \gamma n' \rightarrow \pi N$ (W < 2 GeV)
> Fit ~27,000 data points including
do/d\Omega & spin-polarization observables.

1.2

 E_v (GeV)

 \checkmark

Results of the fits

Extracting resonance parameters

Proper definitions of

- ✓ g_{N^*MB} , g_{Δ^*MB} γ^(*) N → N^{*}, Δ^{*} form factors
- ➔ Pole positions of the amplitudes
- ➔ Residues^{1/2} at the pole

Comparison of $\gamma p \rightarrow N^*$, Δ^* helicity amplitudes (A^p_{1/2,3/2})

A (10 ⁻³ GeV ^{-1/2})	$A^{p}_{1/2}$				$A^{p}_{3/2}$				
ϕ (degree)	Ou	rs	΄ BoΩ	Ga	Ours		BoG	a	
Particle $J^P(L_{2I2J})$	A	ϕ	A	ϕ	A	ϕ	A	ϕ	
$N(1535)1/2^{-}(S_{11})$	161	8	116 ± 10	7 ± 6	-	-	-	-	
$N(1650)1/2^{-}(S_{11})$	36	-28	33 ± 7	-9 ± 15	-	-	-	-	
$N(1440)1/2^+(P_{11})$	-40	-9	-44 ± 7	-38 ± 5	-	-	-	-	
$N(1710)1/2^+(P_{11})$	-47	-24	55 ± 18	-10 ± 65	-	-	-	-	
$N(1720)3/2^+(P_{13})$	131	7	110 ± 45	0 ± 40	-34	12	-150 ± 35	65 ± 35	
$N(1520)3/2^{-}(D_{13})$	-28	0	-21 ± 4	0 ± 5	101	4	132 ± 9	2 ± 4	
$N(1675)5/2^{-}(D_{15})$	9	21	24 ± 3	-16 ± 5	49	-12	26 ± 8	-19 ± 6	
$N(1680)5/2^+(F_{15})$	-44	-11	-13 ± 4	-25 ± 22	60	-2	134 ± 5	-2 ± 4	
$\Delta(1620)1/2^{-}(S_{31})$	105	1	52 ± 5	-9 ± 9	-	-	-	-	
$\Delta(1910)1/2^+(P_{31})$	-1	-90	23 ± 9	40 ± 90	-	-	-	-	
$\Delta(1232)3/2^+(P_{33})$	-133	-16	-131 ± 3.5	-19 ± 2	-257	-3	-254 ± 4.5	-9 ± 1	
$\Delta(1700)3/2^{-}(D_{33})$	128	19	170 ± 20	50 ± 15	120	47	170 ± 25	45 ± 10	
$\Delta(1905)5/2^+(F_{35})$	37	-8	25 ± 5	-23 ± 15	-24	-81	-50 ± 4	0 ± 10	
$\Delta(1950)7/2^+(F_{37})$	-69	-14	-72 ± 4	-7 ± 5	-83	2	-96 ± 5	-7 ± 5	

 $A_{1/2,3/2} \equiv A \exp[i\phi] \quad (-90^\circ < \phi < 90^\circ)$

Definition of A_{1/2}, A_{3/2}: $A_{3/2}(Q^2) \equiv \langle R | J_{e.m.}^{\mu}(Q^2) \varepsilon_{\mu}^{(\lambda_{\gamma}=+1)} | N(\lambda_N = -1/2) \rangle$ $A_{1/2}(Q^2) \equiv \langle R | J_{e.m.}^{\mu}(Q^2) \varepsilon_{\mu}^{(\lambda_{\gamma}=+1)} | N(\lambda_N = +1/2) \rangle$ (R = N*, Δ^* ; λ_x = helicity of particle x)

Ours: PRC94(2016)015201 BoGa: EPJA48(2012)15

Comparison of $\gamma p \rightarrow N^*$, Δ^* helicity amplitudes (A^p_{1/2,3/2})

A (10 ⁻³ GeV ^{-1/2})	$A^{p}_{1/2}$				$A^p_{3/2}$				
ϕ (degree)	Ou	rs	É BoO	Ja	Ou	rs	BoG	a	
Particle $J^P(L_{2I2J})$	A	ϕ	A	ϕ	A	ϕ	A	ϕ	
$N(1535)1/2^{-}(S_{11})$	161	8	116 ± 10	7 ± 6	-	-	-	-	
$N(1650)1/2^{-}(S_{11})$	36	-28	33 ± 7	-9 ± 15	-	-	-	-	
$N(1440)1/2^+(P_{11})$	-40	-9	-44 ± 7	-38 ± 5	-	-	-	-	
$N(1710)1/2^+(P_{11})$	-47	-24	55 ± 18	-10 ± 65	-	-	-	-	
$N(1720)3/2^+(P_{13})$	131	7	110 ± 45	0 ± 40	-34	12	-150 ± 35	65 ± 35	
$N(1520)3/2^{-}(D_{13})$	-28	0	-21 ± 4	0 ± 5	101	4	132 ± 9	2 ± 4	
$N(1675)5/2^{-}(D_{15})$	9	21	24 ± 3	-16 ± 5	49	-12	26 ± 8	-19 ± 6	
$N(1680)5/2^+(F_{15})$	-44	-11	-13 ± 4	-25 ± 22	60	-2	134 ± 5	-2 ± 4	
$\Delta(1620)1/2^{-}(S_{31})$	105	1	52 ± 5	-9 ± 9	-	-	-	-	
$\Delta(1910)1/2^+(P_{31})$	-1	-90	23 ± 9	40 ± 90	-	-	-	-	
$\Delta(1232)3/2^+(P_{33})$	-133	-16	-131 ± 3.5	-19 ± 2	-257	-3	-254 ± 4.5	-9 ± 1	
$\Delta(1700)3/2^{-}(D_{33})$	128	19	170 ± 20	50 ± 15	120	47	170 ± 25	45 ± 10	
$\Delta(1905)5/2^+(F_{35})$	37	-8	25 ± 5	-23 ± 15	-24	-81	-50 ± 4	0 ± 10	
$\Delta(1950)7/2^+(F_{37})$	-69	-14	-72 ± 4	-7 ± 5	-83	2	-96 ± 5	-7 ± 5	

 $A_{1/2,3/2} \equiv A \exp[i\phi] \quad (-90^\circ < \phi < 90^\circ)$

Definition of $A_{1/2}$, $A_{3/2}$: $A_{3/2}(Q^2) \equiv \langle R | J_{e.m.}^{\mu}(Q^2) \varepsilon_{\mu}^{(\lambda_{\gamma}=+1)} | N(\lambda_N = -1/2) \rangle$ $A_{1/2}(Q^2) \equiv \langle R | J_{e.m.}^{\mu}(Q^2) \varepsilon_{\mu}^{(\lambda_{\gamma}=+1)} | N(\lambda_N = +1/2) \rangle$ (R = N*, Δ^* ; λ_x = helicity of particle x)

Ours: PRC94(2016)015201 BoGa: EPJA48(2012)15

Comparison of $\gamma p \rightarrow N^*$, Δ^* helicity amplitudes (A^p_{1/2,3/2})

A (10 ⁻³ GeV ^{-1/2})	$A^{p}_{1/2}$				$A^{p}_{3/2}$				
ϕ (degree)	Ours		É BoO	BoGa		rs	BoGa		
Particle $J^P(L_{2I2J})$	A	ϕ	A	ϕ	A	ϕ	A	ϕ	
$N(1535)1/2^{-}(S_{11})$	161	8	116 ± 10	7 ± 6	-	-	-	-	
$N(1650)1/2^{-}(S_{11})$	36	-28	33 ± 7	-9 ± 15	-	-	-	-	
$N(1440)1/2^+(P_{11})$	-40	-9	-44 ± 7	-38 ± 5	-	-	-	-	
$N(1710)1/2^+(P_{11})$	-47	-24	55 ± 18	-10 ± 65	-	-	-	-	
$N(1720)3/2^+(P_{13})$	131	7	110 ± 45	0 ± 40	-34	12	-150 ± 35	65 ± 35	
$N(1520)3/2^{-}(D_{13})$	-28	0	-21 ± 4	0 ± 5	101	4	132 ± 9	2 ± 4	
$N(1675)5/2^{-}(D_{15})$	9	21	24 ± 3	-16 ± 5	49	-12	26 ± 8	-19 ± 6	
$N(1680)5/2^+(F_{15})$	-44	-11	-13 ± 4	-25 ± 22	60	-2	134 ± 5	-2 ± 4	
$\Delta(1620)1/2^{-}(S_{31})$	105	1	52 ± 5	-9 ± 9	-	-	-	-	
$\Delta(1910)1/2^+(P_{31})$	-1	-90	23 ± 9	40 ± 90	-	-	-	-	
$\Delta(1232)3/2^+(P_{33})$	-133	-16	-131 ± 3.5	-19 ± 2	-257	-3	-254 ± 4.5	-9 ± 1	
$\Delta(1700)3/2^{-}(D_{33})$	128	19	170 ± 20	50 ± 15	120	47	170 ± 25	45 ± 10	
$\Delta(1905)5/2^+(F_{35})$	37	-8	25 ± 5	-23 ± 15	-24	-81	-50 ± 4	0 ± 10	
$\Delta(1950)7/2^+(F_{37})$	-69	-14	-72 ± 4	-7 ± 5	-83	2	-96 ± 5	-7 ± 5	

 $A_{1/2,3/2} \equiv A \exp[i\phi] \quad (-90^\circ < \phi < 90^\circ)$

Definition of A_{1/2}, A_{3/2}: $A_{3/2}(Q^2) \equiv \langle R | J^{\mu}_{e.m.}(Q^2) \varepsilon^{(\lambda_{\gamma}=+1)}_{\mu} | N(\lambda_N = -1/2) \rangle$ $A_{1/2}(Q^2) \equiv \langle R | J^{\mu}_{e.m.}(Q^2) \varepsilon^{(\lambda_{\gamma}=+1)}_{\mu} | N(\lambda_N = +1/2) \rangle$ (R = N*, Δ^* ; λ_x = helicity of particle x)

Ours: PRC94(2016)015201 BoGa: EPJA48(2012)15

Comparison of $\gamma n \rightarrow N^*$, Δ^* helicity amplitudes ($A^n_{1/2,3/2}$) (Note: $A^p = A^n$ for Δ^*)

 $A_{1/2,3/2} \equiv A \exp[i\phi] \quad (-90^{\circ} < \phi < 90^{\circ})$

A (10 ⁻³ GeV ^{-1/2})		$A_{1/2}^{n}$		$A_{3/2}^{n}$				
φ(degree)	Ou	\mathbf{rs}	, Bo	Ga	Ou	ırs	Bo	Ga
Particle $J^P(L_{2I2J})$	A	ϕ	A	ϕ	A	ϕ	A	ϕ
$\overline{N(1535)1/2^{-}(S_{11})}$	-112	16	$-103{\pm}11$	$8\pm$ 5	-	-	-	-
$N(1650)1/2^{-}(S_{11})$	-1	45	25 ± 20	0 ± 15	-	-	-	-
$N(1440)1/2^+(P_{11})$	95	-15	35 ± 12	25 ± 25	-	-	-	-
$N(1710)1/2^+(P_{11})$	195	-8	$-40{\pm}20$	$-30{\pm}25$	-	-	-	-
$N(1720)3/2^+(P_{13})$	-59	6	$-80{\pm}50$	$-20{\pm}30$	-28	-19	$-140{\pm}65$	$5{\pm}30$
$N(1520)3/2^{-}(D_{13})$	-43	-1	$-49{\pm}~8$	$-3\pm$ 8	-110	5	-114 ± 12	1 ± 3
$N(1675)5/2^{-}(D_{15})$	-76	2	$-61{\pm}~7$	$-10{\pm}~5$	-38	-5	$-89{\pm}10$	$-17\pm~7$
$N(1680)5/2^+(F_{15})$	34	-12	33 ± 6	$-12\pm~9$	-56	-4	$-44\pm~9$	8 ± 10

Ours: PRC94(2016)015201 BoGa: EPJA49(2013)67

Comparison of $\gamma n \rightarrow N^*$, Δ^* helicity amplitudes ($A^n_{1/2,3/2}$) (Note: $A^p = A^n$ for Δ^*)

 $A_{1/2,3/2} \equiv A \exp[i\phi] \quad (-90^{\circ} < \phi < 90^{\circ})$

A (10 ⁻³ GeV ^{-1/2})	$A_{1/2}^{n}$				$A_{3/2}^{n}$				
ϕ (degree)	Ours		BoGa		Ours		BoGa		
Particle $J^P(L_{2I2J})$	A	ϕ	A	ϕ	A	ϕ	A	ϕ	
$N(1535)1/2^{-}(S_{11})$	-112	16	$-103{\pm}11$	$8\pm$ 5	-	-	-	-	
$N(1650)1/2^{-}(S_{11})$	-1	45	25 ± 20	0 ± 15	-	-	-	-	
$N(1440)1/2^+(P_{11})$	95	-15	35 ± 12	25 ± 25	-	-	-	-	
$N(1710)1/2^+(P_{11})$	195	-8	$-40{\pm}20$	$-30{\pm}25$	-	-	-	-	
$N(1720)3/2^+(P_{13})$	-59	6	$-80{\pm}50$	$-20{\pm}30$	-28	-19	$-140{\pm}65$	5 ± 30	
$N(1520)3/2^{-}(D_{13})$	-43	-1	$-49\pm$ 8	$-3\pm$ 8	-110	5	$-114{\pm}12$	1 ± 3	
$N(1675)5/2^{-}(D_{15})$	-76	2	$-61{\pm}~7$	$-10\pm$ 5	-38	-5	$-89{\pm}10$	-17 ± 7	
$N(1680)5/2^+(F_{15})$	34	-12	33 ± 6	$-12\pm$ 9	-56	-4	$-44\pm$ 9	8 ± 10	

Ours: PRC94(2016)015201 BoGa: EPJA49(2013)67

Comparison of $\gamma n \rightarrow N^*$, Δ^* helicity amplitudes ($A^n_{1/2,3/2}$) (Note: $A^p = A^n$ for Δ^*)

 $A_{1/2,3/2} \equiv A \exp[i\phi] \quad (-90^{\circ} < \phi < 90^{\circ})$

A (10 ⁻³ GeV ^{-1/2})	$A_{1/2}^{\mathbf{n}}$				$A^{n}_{3/2}$				
ϕ (degree)	Ours		BoGa		Ours		BoGa		
Particle $J^P(L_{2I2J})$	A	ϕ	A	ϕ	A	ϕ	A	ϕ	
$N(1535)1/2^{-}(S_{11})$	-112	16	$-103{\pm}11$	$8\pm$ 5	-	-	-	-	
$N(1650)1/2^{-}(S_{11})$	-1	45	25 ± 20	0 ± 15	-	-	-	-	
$N(1440)1/2^+(P_{11})$	95	-15	35 ± 12	25 ± 25	-	-	-	-	
$N(1710)1/2^+(P_{11})$	195	-8	$-40{\pm}20$	$-30{\pm}25$	-	-	-	-	
$N(1720)3/2^+(P_{13})$	-59	6	$-80{\pm}50$	$-20{\pm}30$	-28	-19	$-140{\pm}65$	5 ± 30	
$N(1520)3/2^{-}(D_{13})$	-43	-1	$-49\pm$ 8	$-3\pm$ 8	-110	5	$-114{\pm}12$	1 ± 3	
$N(1675)5/2^{-}(D_{15})$	-76	2	$-61{\pm}~7$	$-10\pm$ 5	-38	-5	$-89{\pm}10$	$-17\pm$ 7	
$N(1680)5/2^+(F_{15})$	34	-12	33 ± 6	$-12\pm~9$	-56	-4	$-44\pm~9$	8 ± 10	

For Δ^* with I = 3/2:

Ours: PRC94(2016)015201 BoGa: EPJA49(2013)67

 $A_{1/2,3/2}^{\text{iso vector}} = \sqrt{3/2} A_{1/2,3/2}^p = \sqrt{3/2} A_{1/2,3/2}^n$

For N* with I = 1/2:

$$A_{1/2,3/2}^{\text{iso vector}} = \left(A_{1/2,3/2}^p - A_{1/2,3/2}^n\right) / (-2\sqrt{3})$$

$$A_{1/2,3/2}^{\text{iso scalar}} = \left(A_{1/2,3/2}^p + A_{1/2,3/2}^n\right) / 2$$

electron-proton reactions

Extensive data from CLAS are available for ep \rightarrow e' π N, e'K Λ , e'K Σ , e' π π N with Q² < 6 GeV²

(New measurements at higher Q² will be performed at CLAS12.)

electron-proton reactions

Extensive data from CLAS are available for ep \rightarrow e' π N, e'K Λ , e'K Σ , e' π π N with Q² < 6 GeV²

(New measurements at higher Q² will be performed at CLAS12.)

electron-'neutron' reactions

Only empirical F2 structure function for inclusive e 'n' \rightarrow e'X is available. [Bosted, Christy, PRC77(2008)065206]

Analysis to obtain exclusive e 'n' \rightarrow e' π N cross section is underway at CLAS.

New data will be available in the near future.

R. Gothe, talk@ECT* workshop(2015) [http://boson.physics.sc.edu/~gothe/ect*-15/talks/Ralf-Gothe.pdf]

electron-proton reactions

Extensive data from CLAS are available for ep \rightarrow e'mN, e'KA, e'K Σ , e'mmN with Q² < 6 GeV²

(New measurements at higher Q² will be performed at CLAS12.)

electron-'neutron' reactions

Only empirical F2 structure function for inclusive e 'n' \rightarrow e'X is available. [Bosted, Christy, PRC77(2008)065206]

Analysis to obtain exclusive e 'n' \rightarrow e' π N cross section is underway at CLAS.

New data will be available in the near future.

R. Gothe, talk@ECT* workshop(2015) [http://boson.physics.sc.edu/~gothe/ect*-15/talks/Ralf-Gothe.pdf]

Extracted γ^(*) p → N^{*}, Δ^{*} transition form factors at finite Q² (evaluated at resonance poles)

Summary

✓ Determining $\gamma(*) N \rightarrow N^*$, Δ^* transition form factors via DCC analysis of π -, γ -, e-induced meson productions

- Primary motivation comes from studying quark-gluon substructure of N* & Δ* resonances, but it can also be important input to constructing a model for neutrino reactions.
- There are still visible uncertainties for extracted form factors, particularly for high-mass resonances.
- New extensive and accurate data from JLab, ELSA, MAMI,... will further improve our reaction model and greatly reduce uncertainties in extracted form factors.

Summary

✓ Determining $\gamma(*) N \rightarrow N^*$, Δ^* transition form factors via DCC analysis of π -, γ -, e-induced meson productions

- Primary motivation comes from studying quark-gluon substructure of N* & Δ* resonances, but it can also be important input to constructing a model for neutrino reactions.
- There are still visible uncertainties for extracted form factors, particularly for high-mass resonances.
- New extensive and accurate data from JLab, ELSA, MAMI,... will further improve our reaction model and greatly reduce uncertainties in extracted form factors.

Neutrino collaboration at J-PARC Branch of KEK Theory Center.

http://nuint.kek.jp/html/English/index_e.html

- Developed DCC model for neutrino-nucleon reactions in resonance region. [Nakamura, HK, Sato, PRD92(2015)074024]
 - assumed certain Q² dependence for axial matrix elements.
 - evaluated vector matrix elements using empirical
 F₂ structure functions for inclusive electron-'neutron' reaction.

Back up

Inclusive cross section $F_2^{em,p}$

Resonance vs DIS (Inclusive structure function)

Parton model by S. Kumano, DCC by S. Nakamura, data are from http://www.ge.infn.it/ osipenko/results/inclusive/

- Total strength of *ep* reaction is well explained by DCC
- hadronic description (DCC model) matches with parton model around $W \sim 2GeV$
- Similar comparison of Parton model with DCC on Charged current and Neutral current structure functions would be interesting.

ANL-Osaka DCC approach to N* & Δ*

Predicted $\pi N \rightarrow \pi \pi N$ total cross sections with our DCC model

ANL-Osaka DCC approach to N* & Δ^*

HK, Nakamura, Lee, Sato, PRC88(2013)035209 (with update)

$d\sigma/d\Omega$ for W < 2.1 GeV

Σ for W < 2.1 GeV

Predicted results for neutrino-induced reactions

Nakamura, HK, Sato, arXiv:1506.03403; to appear in PRD

The first-time full coupled-channels calculation of v-nucleon reactions beyond the $\Delta(1232)$ region !!

Single pion production:

 $d^2\sigma/dWdQ^2$ at Ev = 2 GeV

Predicted results for neutrino-induced reactions

Nakamura, HK, Sato, arXiv:1506.03403; to appear in PRD

Matching resonance and DIS regions (rough idea)

Consider at the nucleon level for the first attempt

- ✓ Currently, Q² dependence of $\langle MB|A_{\mu}(q)|N\rangle$ in the RES region has large flexibility because of no enough neutrino data to fix them.
- ✓ Use DIS information as an additional constraint on Q² dependence of $\langle MB|A_{\mu}(q)|N\rangle$ in the RES region.

