The status of the MEGII and Mu3e experiments at PSI

Angela Papa, Paul Scherrer Institut on behalf of the MEGII and Mu3e collaboration

August 21-27, Nufact 2016 ICISE Quy Nhon, Vietnam

Overview

- charged Lepton Flavour Violation (cLFV) searches with muons at PSI
 - MEGII
 - Mu3e
- Outlook

The $\mu^+ \rightarrow e^+ \gamma$ decay as an example

The $\mu^+ \rightarrow e^+ \, \gamma$ decay as an example

The $\mu^+ \rightarrow e^+ \, \gamma$ decay as an example

The $\mu^+ \rightarrow e^+ \, \gamma$ decay as an example

cLFV searches with muons: status and future prospects

History of $\mu \to e\gamma$, $\mu N \to eN$, and $\mu \to 3e$

Why cLFV with muons?

• Even if taus are the ideal probe for new physics via cLFV w. r. t. muons

- Smaller GIM suppression
- Expected stronger coupling to new physics
- Many possible LFV decays
- Muons are currently the most sensitive probe to new physics via cLFV
 - Huge statistics

• Best upper limit of any particle decay set by the MEG experiment

B(
$$\mu^+ \rightarrow e^+ \gamma$$
) < 5.7 x 10⁻¹³ (2009-2011)

see: M. Venturini, Nufact2016

MEG full data set result

• profile likelihood ratios as a function of the BR: all consistent with a null-signal

Full data sample: 2009-2013 Best fitted branching ratio at 90% C.L.*:

$$\mathcal{B}(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$$

(*) from MEGA to MEG: improvement by a factor ~ **30**

Muon-cLFV coincidence experiments

Gold channels: the $\mu^+ \to e^+ \, \gamma$ and $\mu^+ \to e^+ \, e^-$ decays

How the sensitivy can be pushed down?

Using the $\mu^+ \rightarrow e^+ \, \gamma$ search as an example

Current upper limit	future sensitivity
BR ($\mu^+ \rightarrow e^+ \gamma$) < 4.2 x 10 ⁻¹³ (MEG)	SES ($\mu^+ \rightarrow e^+ \gamma$) ~ 5 x 10 ⁻¹⁴ (MEGII)
BR ($\mu^+ \rightarrow e^+ e^+ e^-$) < 1.0 x 10 ⁻¹² (SINDRUM)	SES ($\mu^+ \rightarrow e^+ e^+ e^-$) ~ 10 ⁻¹⁶ (Mu3e)

• More sensitive to the signal...

The piE5 beam line

- MEGII and Mu3e (phase I) similar beam requirements:
- Small straggling and good identification of the decay region **Only Possible in PiE5!** MEG/MEGII Beam Line

2013	2014	2015	2016	2017-20
Design	Construction	PreEng Run	Eng. Run	Run

MEGII detector concept Sensitivity [2017-20] ~ 4 x 10⁻¹⁴

MEGII collaboration

Mu3e collaboration

MEGII: The new electronic - DAQ and Trigger

- DAQ and Trigger
 - ~9000 channels (5 GSPS)
 - SiPM services included
- 256 channels delivered for the test beam/engineering run before summer and about 1000 channels available soon
- Trigger electronics and several trigger algorithms included and successfully delivered for the test beams/engineering run

MEGII: The LXe calorimeter - MEG

- Purity < I ppm and stable conditions over the time
- Energy (σ_E /E <2.5%) and timing resolutions(σ_t < 70 ps) never reached up to now with a unique detector at 52.8 MeV!
- Crucial ingredients:
 - waveform based analysis
 - calibration and monitoring methods

MEGII: The upgraded LXe calorimeter

- Increased pile-up rejection capability
- Increased acceptance and detection efficiency

Resolution	MEGI	MEGII
u (mm)	5	2.4
v (mm)	5	2.2
w (mm)	6	3.1
E_{γ} (w<2cm)	2.4%	1.1%
E_{γ} (w>2cm)	1.7%	1.0%
t _y (ps)	67	60 19

The MEGII calorimeter: Assembly

- All 4200 Hamamatsu VUVsensitive 12x12 mm² SiPM (MPPC) were produced and succefully tested
- Detector assembly ongoing outside piE5 area
- Liquefaction, tests, purification and calibration inside piE5 area after summer

Positron/electron detector requirements

- High detection efficiency and acceptance (10 60 MeV/c)
- High rate capability
- High momentum resolutions
 - good hit resolutions
 - low mass

The MEGII spectrometer: a single volume chamber

Resolutions	MEG	MEG II
$p_e \; (\text{keV})$	306	130
$\vartheta_e(\mathrm{mrad})$	9.4	5.3
$\varphi_e(\mathrm{mrad})$	8.7	4.8
e^+ efficiency (%)	40	88

The single volume chamber: Wiring

- Carbon fibre structure test successful
- Construction going on: wiring and assembly
- To be delivered to PSI end of this year/begging of next one

The MEGII spectrometer: the pixelized Timing Counter

Number of Hits

The pixelized Timing Counter: commissioning

- Successful engineering run in June/July 2016 (one quarter of the new TC)
- Detector performances fully achieved along the beam line
- To be completed and commissioned by this year

MEGII: new auxiliary detectors

- Commissioned during the engineering run in June/July 2016
- DS Detector status: Ready!
- US Detector under study/ in preparation

~28% sensitivity improvement by tagging gamma-rays from radiative decays

MEGII: new calibration methods and upgrades

- CEX reaction: $p(\pi^-,\pi^0)n, \pi^0 \gamma \gamma$
- IMV Cockcroft-Walton accelerator
- Pulsed D-D Neutron generator
- NEW: Mott scattered positron beam to fully exploit the new spectrometer !
- NEW: not invasive, ID particle identification, vacuum compatible, working in magnetic field, online beam monitor (beam rate and profile)

Mu3e: The Mupix tracker detector

- Based on the High Voltage Monolithic Active Pixel Sensors (HV-MAPs)
- HV-CMOS technology
- Reverserly biased ~60 V
 - charge collection via drift
 - fast < I ns
 - thinning to ~50 μ m
- Integrated readout electronics
- Full detection efficiency (> 99%)
- High rate capability (> I MHz)
- Timing resolution < 17 ns

Mu3e: The Mupix R&D history

Several generations of MuPix chips realised:

Version	Year	Main features
MuPix1/2	2011/12	Analog prototype chips
MuPix3	2013	First digital readout
MuPix4	2013	Working digital readout and time-stamping
MuPix6	2014	Readout bugs fixed, double-staged preampli-
		fier
MuPix7	2014	Fast serial readout (1.25 Gbit/s), internal
		state machine, internal clock generation

MuPix3–7 have an area of 3 \times 3mm². MuPix7 pixel size: 103 \times 80 μ m².

Mu3e: The Mupix status

- After an extensive test beam campaign, achived milestones
 - A fully functional HV-MAPS chip, 3x3 mm²
 - Operation at high rates: 300 kHz at PSI; up to 1 MHz at SPS
 - Crosstalk on setup under control, on chip seen. Mitigation plan exists (Mupix8)
 - Routinely operated systems of up to 8 chips in testbeams reliably
 - Data processing of one telescope at full rate on GPU demostrated
- Next steps
 - Mupix 8: from 3x3 mm² to 20x20 mm²
 - Submission deadline: June 2016

Mu3e: The timing detector - Tiles and SciFi

- Precise timing measurement is critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

Scintillating fibres O(1 ns); Scintillating tiles O(100 ps)

Mu3e: Tiles - R&D completed

 Detector perfomances fully achived: 100% detection efficiency and timing resolution < 100 ps (~ 70 ps)

Mu3e: SciFi R&D status

Fibres:

confirmed full detection efficiency and timing performances for multi-layer configurations (square and round fibres) with several prototypes

Electronics STiC3.1:

confirmed standalone DAQ measurements of round prototype

Round fibre prototype connected to STiC

Mu3e: SciFi chain production

SiPM alignment

SiPM/ Preamp characterization

Measurement

Outlook

- cLFV processes are among the most clean where to search for new physics
 - muon cLFV: most cLFV sensitive channels
 - complementarity for unveling the driven physics associated with them
- PSI and collaborating Institutions are leading such a researches based on continuous high intensity muon beams (MEG, MEGII, Mu3e, HiMB, muCool...)
- The MEGII preparation is underway: all sub-detectors expected to be ready and installed by the middle of next year
- The Mu3e R&D is ongoing: a first pre-engineering run expected by the end of next year