R & D on superconducting half-wave resonators for high intensity proton driver

High Energy Accelerator Research Organization

Gunn Tae Park, Eiji Kako, Yukinori Kobayashi, Tadashi Koseki, Tomofumi Maruta, Shinichiro Michizono, Fujio Naito, Hirotaka Nakai, Kensei Umemori, and Seiya Yamaguchi

Contents

- 1. Introduction
- 2. Front end structure
- 3. Electromagnetic design of superconducting cavities
- 4. Conclusion

Proton driver linac overview

- For long-baseline neutrino oscillation physics, multi-MW proton driver linac with high intensity beam current is needed.
- For efficient acceleration, linac is operated in pulsed mode with high duty

ILC 9-cell elliptical cavity

XFEL Yield of

1st pass

vield 1st pass

Yield of usable

Linac structure: cryomodule

Front end component specification

cavities	HWR1	HWR2	SSR	MBE	HBE
n (cell/gap)	2	2	2	5	5
f (MHz)	325	325	325	650	650
βopt	0.13	0.24	0.46	0.65	0.81
Ein (MeV)	0.10	0.15	0.29	0.51	0.67
Eout (MeV)	0.15	0.29	0.51	0.67	0.9
Vo (MV)	0.8	2.1	5.3	10.2	15.4
synchronous phase (°)	-30	-30	-27	-25	-25
Pbeam (peak) (MW)	0.052	0.167	0.447	1.02	1.54
n (cavity)	10	20	30	20	72
n (cryomodule)	2	5	6	5	24

Development of two superconducting half wave resonators

Specification	HWR1	HWR2
f (MHz)	325	325
etaopt	0.13	0.24
ϕ (mm)	40	40

• Requirements from beam dynamics

• Other considerations

must come with superconducting solenoid for tight focusing.→ axis-symmetric accelerating gradient

Specification	HWR1	HWR2
σ (mm)	3.2	2.2
<i>Pb</i> (W)	5.50E+04	1.40E+05
loss rate	1.80E-05	7.10E-06
aperture	±4.4σ	±4.9σ
error margin	1.4	1.8
φ (mm)	40	40

Important features of the cavities

Optimization of cavity geometry

HWR1

HWR2

Dimensions of the cavities

RF performance of the cavities

Figures of merit	HWR1	HWR2
Vo	0.86 MV	1.93 MV
TTF	0.77	0.79
Vacc	0.66 MV	1.52 MV
Eacc	5.5 MV/m	6.9 MV/m
R/Q0	237.7 Ω	120.8 Ω
G	53.8 Ω	88.3 Ω
Qo	1.10E+09	1.90E+09
U	0.9 J	4.4 J
Pwall	1.6 W	4.8 W
Esp/Eacc	6.3	5.1
Bsp/Eacc	12.9 (mT/(MV/m))	8.3 (mT/(MV/m))
Pg	57 kW	132 kW

surface resisance for high purity Nb

 $R_{s}(4K) = 47.4 n\Omega$

Power supply to the cavity

• The power supply P₉ to maintain constant accelerating voltage in strong over-coupling is given as

$$P_g = \frac{V_{acc}^2}{4\frac{R}{Q_0}Q_L} \left[\left(1 + \frac{R}{Q_0}Q_L \frac{I_b}{V_{acc}}\cos\phi_s \right)^2 + \left(2Q_L \frac{\delta f}{f} - \frac{R}{Q_0}Q_L \frac{I_b}{V_{acc}}\sin\phi_s \right)^2 \right]$$

• The power supply Pg without beam reduces to

$$P_g = \frac{V_{acc}^2}{4\frac{R}{Q_0}Q_L} \left[1 + Q_L^2 \left(\frac{2\delta f}{f}\right)^2 \right]$$

On resonance, we have for minimum power

	HWR1	HWR2
adjustable Qe=Q0	1.6 W	4.8 W
non-adjustable Qe	44 kW	66 kW

Fabrication error

freq. shift	HWR1	HWR2
df/dH (MHz/mm)	-0.8684	-0.5972
df/dg (MHz/mm)	4.4115	1.1815
df/dR (MHz/mm)	-0.7316	-0.7992

Cryomodule configuration

Lattice structure design

Conclusion

- Fron end design is now done with target specification of each component.
- Electromagnetic design of the two superconducting half wave resonators is complete. Their prototypes will be fabricated soon.
- Design values are close to the target values (Accelerating voltage).
- The multipaction study of the cavities are still under way.