

Neutrino-nucleus scattering results from MINERvA, part 1

Jeff Nelson William & Mary

NuFact2016 8/22/16

part 2 is Jorge's talk on Friday

Outline

- Goals of scattering for oscillations (i.e. why do I care?)
- Reminder of MINERvA
- Tools for precision cross sections
 - > Benchmarking your detector
 - > Benchmarking your flux
- MINERvA results (part 1 of 2)
 - > Inclusive scattering
 - > QE and QE-like scattering
 - > Evidence for nuclear effects in low-recoil
 - > Results on meson production and nuclear ratios will be covered in Jorge's talk in this WG on Friday
- Future plans
 - > Prospects for the medium energy neutrino data set
 - > Plans for additional antineutrino running

Goals of the long-baseline program

• Targets

- > Quadrant of θ_{23} (most uncertain of the angles)
- > Hierarchy of neutrino mass spectrum
- > CP violation in the neutrino sector
- Later two driven by electron appearance measurements at long baselines at few-GeV energies
 - > Comparisons of neutrino/antineutrino appearance
 - > Understanding background systematic uncertainties
 - > Oscillation parameters (esp. the quadrant) have significant impact on parameter measurements
- Pushes most systematics to regimes we've never achieved!
 - > Flux, interactions, energy scales, background, near/far extrapolation...
 - > e.g. Both NOvA and T2K report 11% syst on their sample backgrounds

Neutrino interactions: why care?

- We need to estimate the energy of the incoming neutrino
 - > Different from the "visible" energy seen in the detector
- Neutrino oscillation experiments use nuclei as targets (e.g. O, C, Ar, Fe)
 - > This affects the visible energy ...
 - > Motion of struck nucleon within nucleus
 - > Number of final state particles
 - We are not sensitive to their rest masses, binding energies

ν

- > Intra-nuclear absorption and scattering
- > Nucleon itself is modified by the nucleus

Π

State of scattering (ca. 2016)

- Final SPS and TeVatron results
 > Tens GeV to hundreds of GeV
- Final results from MINOS
 - > Down into the many GeV region
- Final results from MiniBooNE, K2K, and SciBooNE
 - > All these are for $E < \sim 1 \text{ GeV}$
 - > Dearth of antineutrino data starting to be addressed
- These days MINERvA, ArgoNeut, T2K results rolling in
 - > Dozens of papers
 - > Starting to get the right nuclei
 - > Can't fit it all on one plot anymore... a good thing!!!

PDG2016 data summary

Neutrino event generators

- Neutrino experiments have are few *in situ* physics handles
 - > MIP/muon, muon decay (Michel) electrons, neutral pions
 - > Only know the incoming neutrino direction accurately
- We rely heavily on full simulations of neutrino interactions to understand:
 - > Signal selection
 - > Background rejection
 - > Energy reconstruction
 - > Near/far extrapolation
- In the US program we most often use **GENIE**
 - > C. Andreopoulos et al, NIM A, 614, 87 (2010)
 - > We will use version v2r6p2 as the reference today
- Many other generators and models exist
 - > Some with fully specified final states
 - > Some only with computed physics distributions
- Central values for the generators are fits to scattering data

Examples of deficiencies: NOvA data and their data-driven modifications to GENIE

NOvA Preliminary

Debuted by P. L. Vahle at Neutrino2016

MINERvA and NuMI

MINERvA

- Finely segmented solid scintillator (CH) detector on axis in NuMI
- Active tracker is all scintillator
- Calorimeters are scintillator w/ Fe or Pb 17 mm
- MINOS detector for muon spectrometer

16.7 mm

ο

io

ο

ο

ο

A MINERvA data event

NuMI Neutrino Beam

- 120 GeV protons impinge on a 2 interaction length graphite target
- Mesons are focused by 2 magnetic horns
- Beam composition selected by the polarity of the current in the horns
 - > Forward Horn Current (FHC) focuses π^+ creating a neutrino-enhanced beam
 - > Reverse Horn Current (**RHC**) focuses π^- creating an antineutrino–enhanced beam
- Can also change the target-horn configuration (and horn current) to focus different energy pions & change the neutrino energy spectrum

NIMA 806 (2016) 279

The data set

- NuMI low-energy tune (LE) data collected from 2010-2012
 - > Antineutrinos 1.09×10²⁰ POT
 - > Neutrinos 3.18×10²⁰ POT
 - > Main focus of this talk
- Since then we have been collecting data in NuMI's medium energy (ME) tune
 > 1.1e21 POT in ME tunes
 - > More on this later

Benchmarking your detector

MINERvA test beam program

MINERvA test beam program

- Miniature version of the detector with configurable absorbers
- Tertiary beam for 350 MeV/c to 2 GeV/c (2010)
 - > Now in use (with upgrades) by LARIAT
- Secondary beam 2 GeV/s to 10 GeV/c (2015)
 - > Using the standard Fermilab test beam facility beam
- Magnetic analysis; Cherenkov and TOF systems for PID

Key results from test beam program

Test beam phase 1 (0.4 to 1.7 GeV/c)

- <2% systematics on beam momentum
- Optimization of the optical model
 > Esp. saturation calibration (Birk's constant)
- Proton energy scale and resolution modeled to the 3% level
- Pion energy scale and resolution modeled to the 4.5% level
- Electromagnetic energy scale modeled at the 3% level (also tested by neutral pion mass peak and Michel electrons)
- Tracking threshold modeled at the 1% level
- Mass model accurate to 2% level (via proton range)

Test beam phase 2 (2 to 10 GeV/c)

- In 2015 the collaboration collected more data at higher momenta
- Data calibration is underway along with preliminary analyzes

Muon reconstruction

- Muon (for numu CC) are matched to a track in MINOS
 - > Imposes a 1.5 GeV threshold to punch through the MINERvA calorimeters and be above the MINOS tracking threshold
 - > Limits the maximum muon angle to be within roughly 20° of the beam direction
- MINOS returns momentum based on either range or curvature and charge based on curvature
 - > 2% uncertainty on muon momentum from range due to mass model and dE/dx model in MINOS
 - > 0.6% uncertainty on muon momentum from curvature for momentum below 1.5GeV
 - Based on comparing magnetic field maps to magnetic induction measurements
 - Based on comparisons between range and curvature for tracks and deflection of stopping tracks in MINOS in data/MC
 - Added in quadrature to range uncertainty

NIM A743 (2014) 130

NuMI flux

Flux tools: flux critical for any absolute measurement

- Hadron production data
 - >External thin target hadron production data legacy data from NA49, MIPP >Future: US-NA61
- Can also use standard-candle cross sections

>Neutrino-electron scattering
>Low v (low recoil) event rates

MINERvA a priori flux estimation

- Central value is based on *ex situ* data
 Errors based on experimental data
- Additional errors due to the beam line geometry are evaluated using beam simulations and assumed survey/ geometry errors

The flux game plan

- Correct GEANT4 cross sections using NA49 pC data @158GeV
 - > Then correct for particle attenuation in material due to changed interaction probability. This takes meticulous bookkeeping!
- Use FLUKA to scale to different incident energies (inc. reinteractions)
 - > This scaling was checked by comparing with NA61 (pC)@31GeV
- Test the uncertainty associated with extending proton on carbon interaction to other materials
 - > Extrapolate to data to hadronic cross section in different materials in similar kinematics (Barton, Skubic, Eichten).
- Extend to other incident particles
 - > Pion production from neutron interactions using isospin arguments
 - > K⁰ production using quark counting arguments
- If no data available assume a 40% (!) systematic

arXiv:1607.00704

Coverage from NA49

Rates for various interaction channels during neutrino production

arXiv:1607.00704

Flux by parent particle

Electron Neutrinos Muon neutrinos 2.5×108 POT 104 10²

Hadron production systematics

arXiv:1607.00704

Beam's optical uncertainties

Flux tools: flux critical for any absolute measurement

- Hadron production data
 - >External thin target hadron production data legacy data from NA49, MIPP

>Future: US-NA61

Can also use standard-candle cross sections

>Neutrino-electron scattering

>Low v (low recoil) event rates

Low v flux method

 Charged-current scattering with low hadronic recoil energy (v) is flat as a function of E_v

$$\frac{d\sigma}{d\nu} = A(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2})$$

- Gives a measurement of the flux's shape
- This is a shape measurement:
 - > Flux is normalized so that the extracted inclusive cross section matches an external value at high neutrino energy

Unveiled at 8/1/16 FNAL wine & cheese

NuMI on-axis neutrino flux from the low-nu method

NuMI on-axis antineutrino flux from the low-nu method

Comparisons between low-v fluxes and other MINERvA flux constraints

Low-v flux and a priori thin-target neutrino comparison

FHC neutrinos

arXiv:1607.00704

Low-v flux and a priori thin-target antineutrino flux comparison

RHC antineutrinos

arXiv:1607.00704

Flux from v on electron scattering

- Signal is a single electron moving in beam direction
 - > Purely electro-weak process
 - > Cross section is smaller than nucleus scattering by ~2000
 - > 123 \pm 17(stat) \pm 9(syst) events
- Independent *in situ* flux constraint
 - > Important proof of principle for future experiments
 - Statistically limited in the MINERvA LE sample (~8% error)
 - > Results are consistent with new flux calculations
 - > Results are consistent with the *a priori* flux (~2%) and with the low *v* flux
- Further confidence in flux!
 - > 3 independent methods yield consistent results

PRD 93, 112007 (2016)

Simplest thing... inclusive charged current scattering

(these results use low-nu fluxes)

See J.K. Nelson, Fermilab Wine & Cheese (1/06)

Comparison to world data (the Big Picture)

MINERvA results from select lowenergy world data

All points are isoscalar corrected

Simulation is GENIE

Next simplest thing... QE-like ?!?

Results use new a priori flux

Quasi-elastic scattering

MINERvA Data

Long-standing problem in v_{μ} CCQE

• NOMAD, bubble chambers

- > Used two-track topology with low thresholds
- Consistent with RFG (like GENIE's model) with M_A=1 GeV but prefer a better nuclear model
- K2K, MiniBooNE, MINOS, SciBooNE
 - > Fine-grained scintillator so higher proton tracking threshold
 - > Look for a muon and low recoil; use muon kinematics for energy
 - See a higher rate and different Q² distributions consistent with a higher M_A + low Q² suppression
- By 2010: becoming clear that this was probably due to an extra unmodeled process well known in electron scattering
 - > 2 particle, 2 hole (2p2h)
 - > Models include MEC & TE

NOMAD: EPJ C 63, 355 (2009) MB: PRD 81, 092005 (2010) K2K: PRD 74, 052002 (2006) MINOS: PRD 91, 012005 (2015) SB: J. Walding, IC thesis (2009)

2-track QE, proton-based reconstruction

- Select events based on 1 PID'd stopping proton & 1 muon
- Reconstruct kinematics quantities using proton angle and energy
- Very sensitive to final state interactions
- Shape-only comparison
- In proton kinematic variables, see relatively good agreement with Relativistic Fermi Gas (RFA) model for QE scattering
- These 2-track QE make a pretty good standard candle

PRD 91 071301 (2015)

QE with lepton-based kinematics

- Reconstruct the muon
 - > Require not too much energy beyond a box around the vertex
 - > Relatively insensitive to final state interactions (only enter via the background estimate)
 - > POT normalized (new flux)
- Disagreement with Fermi Gas model seen in total cross section, shape of cross section
 - > Has model discriminating power
 - > Favors a 2p2h contribution
 - > TEM = Transverse Enhancement Model

PRL 111, 022502 (2013), updated 1/16, web data release PRL 111, 022501 (2013), updated 1/16, web data release

Double differential (muon kinematics) antineutrino QE analysis

- Improved reconstruction and systematics WRT prior publications
- Double differential in muon transverse and longitudinal momentum
- Data indicates extra strength at moderate transverse momenta

C. Patrick, FNAL seminar, 6/18/16

Muon Neutrino CC inclusive w/ low recoil

- Another tactic is not cut on the recoil, but rather to look at the low recoil in an inclusive sample
- Reconstruct energy both & momentum transfer (somewhat analogous to electron scattering techniques)
- Default GENIE model struggles to explain the data

PRL 116, 071802 (2016)

Muon Neutrino CC inclusive w/ low recoil

• Compute the "available" energy

 $E_{\text{avail}} = \sum (\text{Proton and } \pi^{\pm} \text{KE}) + (\text{Total } E \text{ of other particles except neutrons})$

- Models adding RPA (charge screening nuclear) effect and a 2p2h process (in this case the Valencia model) improves agreement in some regions, but not strong enough to cover the observed rate
- A Bragg peak counting analysis is also compatible with multi-nucleon final states hypothesis

Electron neutrino QE scattering

Electron neutrino CC QE: Large signal for electron appearance

1st time this channel has been measured

- Isolate the small electron neutrino sample (2% of beam)
- Rely on electrons having one prompt track while neutral pions start their shower with 2 tracks' ionization (e⁺e⁻ pair)
- We also observe a previously unseen photon production process
 More from Jorge on Friday

Electron neutrino CC QE is consistent with muon neutrino CC QE

Constrains differences the between nuclear effects to the 15% level

MINERvA ME Program

- More than 3X POT of LE sample
- 3.5 times more events/POT
- These statistics will allow study of nuclear effects in exclusive states
- Wider ranges of energies means wider range of kinematics to discriminate between models
- We plan to switch to ME antineutrino mode this winter after 12e20 POT

Example of increased kinematic coverage in ME data

- Less than 30% of collected data on these plots
- LE data only able to report out to $Q^2 \sim 2 \ GeV^2$

CC 0pi 1-track

CC 0pi 2-track

Recent MINERvA results... in plots

Recent MINERvA results... in citations

- 1. First evidence of coherent K⁺ meson production in neutrino-nucleus scattering, PRL 117, 061802 (2016)
- 2. Measurement of Neutrino Flux using Neutrino-Electron Elastic Scattering, PRD 93, 112007 (2016)
- 3. Measurement of partonic nuclear effects in deep-inelastic neutrino scattering using MINERvA, PRD 93, 071101 (2016)
- 4. Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer, PRL 116, 071802 (2016)
- 5. Measurement of electron neutrino quasielastic and quasielastic-like scattering on hydrocarbon at average E_v of 3.6 GeV, PRL 116, 081802 (2016)
- 6. Single neutral pion production by charged-current anti- v_{μ} interactions on hydrocarbon at average E_v of 3.6 GeV, PLB 749 130 (2015)
- 7. Measurement of muon plus proton final states in ν_{μ} Interactions on Hydrocarbon at average E_{ν} of 4.2 GeV, PRD 91, 071301 (2015)
- 8. Measurement of coherent production of π^\pm in neutrino and anti-neutrino beams on carbon from E_ν of 1.5 to 20 GeV, PRL. 113, 261802 (2014)
- 9. Charged pion production in v_{μ} interactions on hydrocarbon at average E_{ν} of 4.0 GeV, PRD 92, 092008 (2015)
- 10.Measurement of ratios of v_{μ} charged-current cross sections on C, Fe, and Pb to CH at neutrino energies 2-20 GeV, PRL 112, 231801 (2014)
- 11.Measurement of muon neutrino quasi-elastic scattering on a hydrocarbon target at E_v ~3.5 GeV, PRL 111, 022502 (2013)
- 12. Measurement of muon antineutrino quasi-elastic scattering on a hydrocarbon target at E_v ~3.5 GeV, PRL 111, 022501 (2013)
- > Measurement of K⁺ production in charged-current v_{μ} interactions, arXiv:1604.01728
- > Evidence for neutral-current diffractive neutral pion production from hydrogen in neutrino interactions on hydrocarbon, arXiv:1604.01728
- > Cross sections for neutrino and antineutrino induced pion production on hydrocarbon in the few-GeV region using MINERvA, arXiv:1606.07127
- > Neutrino flux predictions for the NuMI beam, arXiv:1607.00704

Several public results with in papers preparation

- > Antineutrino quasielastic scattering
- > Neutrino quasielastic scattering
- > Charged current neutrino and antineutrino inclusive cross sections via the low-nu flux method

The MINERvA Collaboration (June '16)

More analysis topics than people... Consider joining us!

MINERvA Collaborating Institutions

- William & Mary (USA)
- Rochester (USA)
- Fermilab (USA)
- Rutgers (USA)
- MCLA (USA)
- Pittsburgh (USA)
- Florida (USA)
- Oregon State (USA)
- Hampton (USA)

- Minnesota-Duluth (USA)
- CBPF (Brazil)
- PUCP (Peru´)
- UNI (Peru´)
- Guanajuato (Mexico)
- USM (Chile)
- Geneva (Switzerland)
- Oxford (UK)