22/08/16

To CCQE and Beyond

Results and prospects of latest CCQE-like analyses from the T2K near detectors

Stephen Dolan For the T2K Collaboration

s.dolan@physics.ox.ac.uk

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Overview

- The T2K experiment
- Motivation for measuring CCQE-like cross sections
- Flux and near detectors' details
- NuFact 15 recap
- CC0 π on water cross section using the PØD
- FGD1 analyses using proton information
 - CC0 π using proton kinematics
 - CC0 π using inferred kinematic imbalance
 - CC0 π using transverse kinematic imbalance
- Other analyses
 - CC0 π measurements from $\nu + \bar{\nu}$ joint fit
 - CC0 π at INGRID
 - Extraction of free nucleon cross section using δp_{TT}
- Summary and future work

The T2K Experiment

Far Detector

Super-Kamiokande

NuFact 2016, Quy Nhon, Vietnam

Stephen Dolan

Data Collection

- Continuous rise in beam power from ~225 kW (2014) to ~420 kW (2016)
- Using this to make world leading measurements of oscillation parameters (see talk by Benjamin Quilain – WG1, Tuesday, 14:00)

Stephen Dolan

-

Neutrino Scattering and OA

- Oscillation analysis (OA) requires E_{ν} spectrum (or similar)
- Can reconstruct using observed μ assuming stationary target and elastic scattering

$$E_{\nu,rec} = \frac{m_p^2 - m_n^2 - m_\mu^2 + 2m_n E_\mu}{2(m_n - E_\mu + p_\mu \cos(\theta_\mu))}$$

Bias due to Fermi Moton and CCnonQE components

Neutrino Scattering and OA

- Essential to understand νN scattering to control the bias
 - CCQE particularly important for T2K
- Probe using $CC0\pi$ cross sections
 - Less FSI model dependence
 - Simplest channel to probe nuclear effects.

NuFact 2016, Quy Nhon, Vietnam

6_

- Off-axis v_{μ} beam
 - Tightly-peaked at 600 MeV 2.5° off-axis towards SK
 - Low contamination from non- ν_{μ} components
 - Flux estimation aided by hadron production measurements from NA61/SHINE at CERN (see talk at WG1+2 session on Thursday 10:45)

Phys. Rev. D 87, 012001

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

NuFact 2016, Quy Nhon, Vietnam

From Reconstruction to Truth

- Measure selected number of CC0π events in bins of a reconstructed quantity
- Need the **total** number of $CC0\pi$ events in bins of a **true** quantity

Two Methods

Matrix Unfold

- Use MC to build unsmearing matrix
- Apply unsmearing matrix + efficiency correction to data
- True bin \rightarrow Reco Template
- Vary MC template norm to fit data
- Apply efficiency correction

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Previously at NuFact

- The T2K experiment
- Motivation for measuring CCQE-like cross sections
- Flux and near detectors' details
- NuFact 15 recap
- CC0 π on water cross section using the PØD
- FGD1 analyses using proton information
 - CC0 π using proton kinematics
 - CC0 π using inferred kinematic imbalance
 - CC0 π using transverse kinematic imbalance
- Other analyses
 - CC0 π measurements from $\nu + \bar{\nu}$ joint fit
 - CC0 π at INGRID
 - Extraction of free nucleon cross section using δp_{TT}
- Summary and future work

INGRID On-Axis CCQE Result

- Carbon Target
- 2-bin measurement in neutrino energy
- Split into 1- and 2-track samples
- Used cuts on muon and proton kinematic variables to enhance purity
- Result depends on nuclear model used and the presence of 2p2h

ND280 Off-Axis CC0 π Result

- Uses FGD1 as a CH target alongside TPC for tracking
- Flux integrated doubledifferential **CC0** π cross section in final state muon kinematic variables $(p_{\mu}, \cos(\theta_{\mu}))$
- Split into two analyses with different selection and crosssection extraction strategies
 - Good agreement
- Results compared to 2p2h models

Detector: ND280 – FGD1 **Target:** Carbon **Signal:** $CC0\pi$ **Unfolding:** Matrix + Fit **Status:** Phys. Rev. D **93**, 112012

NuFact 2016, Quy Nhon, Vietnam

ND280 Off-Axis CC0 π Result

- Results compared to Martini et al. model with(red)/without(black) 2p2h
- Data prefer a 2p2h contribution

NuFact 2016, Quy Nhon, Vietnam

What next?

Interactions

Final State Interactions

Pauli

- Would like to disentangle the role of separate nuclear effects
- Current results provide an important piece of the puzzle

One cross-section measurement

Now need complementary measurements ...

Ongoing measurements New PØD $CC0\pi$ water cross section in muon kinematics analysis - Measure of A-scaling, invaluable for OA $CC0\pi$ measurement using muon + proton kinematics - Enhanced sensitivity to nuclear effects FGD1 ongoing analyses $CC0\pi$ measurement using composite variables using proton - Imbalance between the proton and muon can be information a precision probe of nuclear effects $CC0\pi$ using INGRID proton module Model-independent measurement at higher E_{ν} Other FGD1 / $CC0\pi$ neutrino/anti-neutrino joint fit INGRID - $\sigma_{np-nh}/\sigma_{CCOE}(E_{\nu})$ is substantially different for ν_{μ} and $\bar{\nu}_{\mu}$ analyses Measurement of free-nucleon cross section using δp_{TT}

N.B: T2K employs a blind cross-section analysis strategy

- Ongoing or recently completed analyses not applied to real data (remain "blind")

Stephen Dolan

- The T2K experiment
- Motivation for measuring CCQE-like cross sections
- Flux and near detectors' details
- NuFact 15 recap
- CC0 π on water cross section using the PØD
- FGD1 analyses using proton information
 - CC0 π using proton kinematics
 - CC0 π using inferred kinematic imbalance
 - CC0 π using transverse kinematic imbalance
- Other analyses
 - CC0 π measurements from $\nu + \bar{\nu}$ joint fit
 - CC0 π at INGRID
 - Extraction of free nucleon cross section using δp_{TT}
- Summary and future work

$CC0\pi$ water cross section

Contact: Tianlu Yuan tianlu.vuan@colorado.edu

- Isolate CC0 π events starting in the PØD
- Separate data taking periods into when PØD water target is full/empty \rightarrow subtract to get water cross section

0.6

NuFact 2016, Quy Nhon, Vietnam

Target: Water

Event Selection

- Uses PØD as a target, requires TPC for tracking
- Aim to find single μ only
- Two control samples
 - CC1 π : look for 2 PØD tracks and Michel e^-
 - **CCOther**: look for >2 PØD tracks

18

Stephen Dolan

Detector: ND280 - PØD

$CC0\pi$ water cross section

Contact: Tianlu Yuan **tianlu.yuan@colorado.edu**

19

- Construct flux integrated doubledifferential cross section
- Results compared to GENIE and NEUT predictions
- Can also compare to FGD1 CC0π on Carbon result

 Similar studies underway using FGD2 water layers to extract Oxygen:Carbon cross section ratio

Detector: ND280 - PØD

$CC0\pi$ water cross section

Contact: **Tianlu Yuan** tianlu.yuan@colorado.edu

20

TZ

- Compare results to RPA/RPA+2p2h on Carbon
- Data prefer 2p2h contribution
- Difficult to untangle role of A-Scaling

FGD1 - CC0 π + Np

- The T2K experiment
- Motivation for measuring CCQE-like cross-sections
- Flux and near detectors details
- NuFact 15 recap
- CC0 π on water cross-section using the PØD
- FGD1 analyses using proton information
 - CC0 π using proton kinematics
 - CC0 π using inferred kinematic imbalance
 - CC0 π using transverse kinematic imbalance
- Other analyses
 - CC0 π measurements from $\nu + \bar{\nu}$ joint fit
 - CC0 π at INGRID
 - Extraction of free nucleon cross-section using δp_{TT}
- Summary and future work

FGD1 CC0*π* Analyses

- Require one μ -like track or one μ -like and p-like track(s) starting in FGD1
- Use a Michel electron tag and ECal EM shower veto to reject 1π backgrounds
- Use of many samples gives wide kinematic acceptance

Sidebands

 Require extra π-like track(s)

22

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

$CC0\pi$ using $\mu + p$ kinematics

• Measuring *p* kinematics allows us to move beyond these assumptions

1000

23

0.6 0.8

 $cos(\theta_{p}^{true})$

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

$CC0\pi$ using $\mu + p$ kinematics

- Aim to measure $CC0\pi$ cross section in bins of $\cos(\theta_{\mu}), \cos(\theta_{p}), p_{p}$ in samples with proton
- Use $\cos(\theta_{\mu})$, p_{μ} when no proton reconstructed
- Also measure proton multiplicity
- Construct flux-integrated double/triple-differential cross-section
- Fake data: GENIE*
- Nominal MC: NEUT

Detector: ND280 - FGD1

Stephen Dolan

Contact:

Pierre Bartet

bartet@lpnhe.in2p3.fr

 $CC0\pi$ and inferred kinematic imbalance

- Can use proton and muon kinematics to form variables specifically engineered to probe nuclear effects
- Under stationary target and elastic scattering assumptions can infer proton kinematics from measured μ
- Non-zero imbalance between inference and measured proton indicates presence of nuclear effects or CC-non-QE interaction
- Measure:

$CC0\pi$ and inferred kinematic imbalance

Contact: Jiae Kim

flux

FSI

······ MC Truth

xsec detector

data stat MC stat

Unfolded

Fakedata truth

 $0.8 < \cos \theta_{\mu} < 1.0, p_{..} > 750 \text{ MeV}$

T2K Work

In Progress

jiae@phas.ubc.ca

- Measure inferred kinematics in bins of p_{μ} , $\cos(\theta_{\mu})$
- Fake data: GENIE*
- Nominal MC: NEUT

 $(10^{-38}cm^2GeV^{-1}Nucleon^{-1})$

0.06

0.05

0.04

0.03

0.02

Single Transverse Variables

Detector: ND280 – FGD1Target: CarbonSignal: CC0π+NpUnfolding: FitStatus: BlindStephen DolanNuFact 2016, Quy Nhon, Vietnam27T2K

$CC0\pi$ and transverse imbalance Contact: Stephen Dolan Stephen Dolan Stephen Dolan

- 3 single transverse variables (STV) characterise imbalance in plane transverse to incoming v^*
- For CCQE case any deviation from $\delta p_T = 0$, $\delta \phi_T = 0$ is indicative of nuclear effects

• Minimal dependence on E_{ν} for δp_T and $\delta \alpha_T$

 δp_T

δατ

$CC0\pi$ in STV - Fermi Motion and FSI

Moving from CCQE→CC0Pi+Np, STV still a probe of nuclear effects

Detector: ND280 – FGD1	Target: Carbon	Signal: CC0π+Np	Unfolding: Fit	Status: Blind
Stephen Dolan	NuFact 2016, C	Quy Nhon, Vietnam	32	T2K

$CC0\pi$ in STV - 2p2h and M_A

Target: Carbon

M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys. Rev. C 80, 065501 (2009)

Detector: ND280 - FGD1

Stephen Dolan

J. Nieves, I. R. Simo, and M. J. V. Vacas, Phys. Rev. C 83, 045501 (2011)

NuFact 2016, Quy Nhon, Vietnam

Signal: $CC0\pi + Np$

Unfolding: Fit

33

Status: Blind

$CC0\pi$ in STV

Contact: Stephen Dolan s.dolan@physics.ox.ac.uk

 $p_{\mu} > 250 \; MeV/c$

 $\cos(\theta_u) > -0.6$

 $\cos(\theta_p) > 0.4$

 $450 \ MeV/c < p_{\mu} < 1 \ GeV/c$

Restrict cross section to ND280 acceptance —

- Use a regularised template fit to unfold
 - Useful to deal with large STV smearing
 - Regularisation insists cross-sections should be smooth
- Fake data: GENIE*
- Nominal MC: NEUT

FGD - CC0 π + Np

- The T2K experiment
- Motivation for measuring CCQE-like cross sections
- Flux and near detectors' details
- NuFact 15 recap
- CC0 π on water cross section using the PØD
- FGD1 analyses using proton information
 - CC0 π using proton kinematics
 - CC0 π using inferred kinematic imbalance
 - CC0 π using transverse kinematic imbalance
- Other analyses
 - CC0 π measurements from $\nu + \bar{\nu}$ joint fit
 - CC0 π at INGRID
 - Extraction of free nucleon cross section using δp_{TT}
- Summary and future work

Summary

- T2K is measuring cross-sections of exclusive final-state topologies - This talk: $CC0\pi$
 - Talk by Erez Reinherz-Aronis: CCInc, CC1 π +, NCE (WG2, Friday, 10:45)
- Lots going on in T2K cross-section analyses many results coming soon!
- First CC0 π water cross section has been measured
- Many new techniques in use to complement each other and existing results
 - Analyses specifically engineered to probe nuclear effects

NuFact 2016, Quy Nhon, Vietnam

The Future

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Thank you for listening

Cảm ơn

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Ongoing measurements

•	CCOπ water cu - Measure of A	New PØD					
	Detector: ND280 – PØD	Target: Water	Signal: CC0 π	Unfolding: Matrix	Status: Unblind		
•	$CC0\pi$ measure						
	- Enhanced ser						
	Detector: ND280 – FGD1	Target: Carbon	Signal: CC0 <i>π</i> (+N	p) Unfolding: Fit	Status: Blind		
•	CC0π measure - Imbalance as	Ongoing FGD1 analyses					
[Detector: ND280 – FGD1	Target: Carbon	Signal: CC0 <i>π</i> +Np	Unfolding : Matrix	Status: Blind	information	
•	- Imbalance as						
	Detector: ND280 – FGD1	Target: Carbon	Signal: CC0 <i>π</i> +Np	Unfolding: Fit	Status: Blind		
•	CC0π using IN - Model indep						
	Detector: ND280 - FGD1	Target: Carbon	Signal: CC0 π	Unfolding: Fit	Status: Blind		
•	$CC0\pi$ neutrino	Other FGD1 /					
	- $\sigma_{np-nh}/\sigma_{CCQE}$	- INGRID					
[Detector: INGRID	Target: Carbon	Signal: CC0 π	Unfolding : Matrix	Status: Blind	analyses	
•	Measurement	leasurement of free-nucleon cross-section using δp_{TT}					
[Detector: ND280 – FGD1	Target: Hydrogen	Signal: CC1 <i>π</i> 1p	Unfolding: Fit	Status: Blind		

NuFact 2016, Quy Nhon, Vietnam

TZK

BACKUPS

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

TZK

Likelihood Fitting

- Each true bin has some template in reconstructed bins.
- Varying the number of events in a true bin applies a normalisation factor to the corresponding recon template.
- Vary templates until reconstructed distribution best fits the data

• I.e minimise:
$$\chi^2_{stat} = \sum_{j}^{recobins} 2(N_j^{MC} - N_j^{obs} + N_j^{obs} ln \frac{N_j^{obs}}{N_j^{MC}})$$

NuFact 2016, Quy Nhon, Vietnam

Fitting summary

• The best fit parameters are those that minimise the following likelihood:

$$\chi^2 = \chi^2_{stat(fit\,goodness)} + \chi^2_{syst(penalty)} + \chi^2_{reg}.$$

$$\chi_{stat}^2 = \sum_{j}^{recobins} 2(N_j^{MC} - N_j^{obs} + N_j^{obs} ln \frac{N_j^{obs}}{N_j^{MC}})$$

$$\chi^2_{syst} = (\vec{a}^{syst} - \vec{a}^{syst}_{prior})(V^{syst}_{cov})^{-1}(\vec{a}^{syst} - \vec{a}^{syst}_{prior})$$

$$\chi^2_{reg} = p_{reg} \sum_i (c_i - c_{i-1})^2$$

Systematics in the fitter

• Add term to the fit

$$\chi^2_{syst} = (\vec{a}^{syst} - \vec{a}^{syst}_{prior})(V^{syst}_{cov})^{-1}(\vec{a}^{syst} - \vec{a}^{syst}_{prior})$$

- The fit is able to constrain systematic parameters (mostly through control regions) but picks up a penalty if it moves far from the prior.
- **Detector Systematics** (e.g. TPC momentum resolution):
 - Make many toy experiments, each varying detector properties we are unsure of.
 - Produce covariance matrix which tells the fit the overall uncertainty in the number of events in each bin and how this correlates between bins.
- **Model Systematics** (e.g. *M_{A,RES}*, pion FSI):
 - Use covariance matrix produced from external data fits which tells us the uncertainty on model parameters.
 - Make splines that tell the fitter how to reweight the MC if we alter model parameters that describe the background In the fit.
 - Flux Systematics:
 - Use covariance matrix produced by beam group which tells us the uncertainty on the flux in bins of neutrino energy.
 - Store the neutrino energy of each event in the fit.

Regularising the fitter

- Reaching a fit result is an 'ill posed problem' -> there are often degeneracies in the fit solutions.
- E.g. can often lower a particular template scaling parameter so long as we raise the adjacent parameters
 - Strong anti correlations between bins!
- Can resolve with regularisation:
 - Add another term
 - Regularisation loosely ties bins together
- But how to choose the best p_{reg} ?
- Want to have the maximum smoothing impact with the minimal effect on the χ^2 of the fit.
 - This problem is well studied, can choose p_{reg} using the "L-Curve".
- Toy example fitting a Gaussian from a flat prior in backups.

$$\chi^2_{reg} = p_{reg} \sum_i (c_i - c_{i-1})^2$$

Regularising the fitter

SIAM Rev., 34(4), 561580 (1992).

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Regularisation

More detail:

https://www.mat.tuhh.de/lehre/material/RegLS.pdf

• Penalty term in my fit from regularisation:

$$\chi^2_{reg} = p_{reg} \sum_i (c_i - c_{i-1})^2$$

This looks like a rather non χ^2 -like term slapped onto the fit...

But could also write it as:
$$\chi^2_{reg} = p_{reg} (p - p_{prior}) (V_{cov})^{-1} (p - p_{prior})$$

$$(V_{cov})^{-1} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & -1 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$
 Or to make the matrix non-singular:
$$(V_{cov})^{-1} = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \dots & 0 \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & -1 \\ 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

- Applying a penalty term in this way makes regularisation enter the fit identically to model parameters.
- In fact in some sense the application of regularisation is a model that says cross sections should be smooth relative to their prior.
- The uncertainty in the smoothness model is then $1/\sqrt{p_{reg}}$.

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

50

T2K

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

FGD2 Oxygen Cross Section

Contact: Margherita Buizza Avanzini **buizza@llr.in2p3.fr**

• Measure the cross section on **oxygen** and **carbon** simultaneously fitting events starting in FG2 water and carbon layers

 Extract flux integrated Oxygen cross section and ratio oxygen/carbon flux integrated cross sections

$$\frac{d\sigma}{dp_{\mu}} = \frac{o_i N_{MC}^{sig,O}}{\Phi \cdot N_{neutrons}^{FV,O} \cdot \Delta p_{\mu}}$$

INGRID CCOPi Analysis

- Select 1 μ -like track beginning in the proton module
- Measure θ_{μ}^{rec} and d_{μ}^{rec} distance penetrated through the iron (no B field)
- Unfold into θ_{μ}^{true} and p_{μ}^{true}
- Build double differential cross-section
- With 4 momentum bins and 5 angular bins uncertainty is 10%-20%
- Blind analysis

CCOPi $v + \bar{v}$ joint fit

- 2p2h contribution is different for v and \bar{v} *
- Comparison of $v + \bar{v}$ can help identify 2p2h
- Aim to extract $\bar{\nu}$ double differential crosssection in p_{μ} , $\cos(\theta_{\mu})$ alongside $\nu + \bar{\nu}$ sum, difference and asymmetry
- Uses extra high angle and backward $\mu^{+/-}$ samples
- Cross-section extraction via a likelihood template fit
- Blind analysis

* M Martini: PHYSICAL REVIEW C 80, 065501 (2009), PHYSICAL REVIEW C 81, 045502 (2010)

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

3.24x10^20 POT

CCOPi $v + \bar{v}$ joint fit measurements

$$c_i^{\bar{v}} N_i^{\bar{v}MCCC0\pi}, c_i^{v} N_i^{vMCCC0\pi}$$

= (what we measure) number of $CC0\pi$ events in 'true' muon p, $\cos\theta$ bins

Extract 3 measurements:

• CC0 $\pi \bar{v}$ flux integrated cross-section

$$\frac{d\,\sigma^{\nabla}}{dp_{\mu}d\cos\theta_{\mu}} = \frac{c_{i}^{\nabla}N_{i}^{\nabla MCCC0\pi}}{\Phi^{\nabla} \cdot N_{protons}^{FV} \cdot \Delta p_{\mu}\Delta\cos\theta_{\mu}}$$

 sum, difference and v-v xsec → allow to disentangle different terms of xsec (compare with 2p2h models)

$$\frac{d\left(\sigma^{\mathsf{v}}\pm\sigma^{\overline{\mathsf{v}}}\right)}{dp_{\mu}d\cos\theta_{\mu}} = \frac{1}{\Delta p_{\mu}\Delta\cos\theta_{\mu}} \left[\frac{c_{i}^{\overline{\mathsf{v}}}N_{i}^{\overline{\mathsf{v}}MCCC0\pi}}{\Phi^{\overline{\mathsf{v}}}\cdot N_{protons}^{FV}} \pm \frac{c_{i}^{\mathsf{v}}N_{i}^{\mathsf{v}MCCC0\pi}}{\Phi^{\mathsf{v}}\cdot N_{neutrons}^{FV}} \right]$$

- asymmetry of v- \bar{v} xsec \rightarrow direct effect on δ_{CP} measurement

$$\frac{d\left(\sigma^{\mathsf{v}}-\sigma^{\bar{\mathsf{v}}}\right)}{d\left(\sigma^{\mathsf{v}}+\sigma^{\bar{\mathsf{v}}}\right)} = \frac{c_{i}^{\bar{\mathsf{v}}} N_{i}^{\bar{\mathsf{v}} MC CC0 \pi} / (\Phi^{\bar{\mathsf{v}}} \cdot N_{protons}^{FV}) - c_{i}^{\mathsf{v}} N_{i}^{\bar{\mathsf{v}} MC CC0 \pi} / (\Phi^{\bar{\mathsf{v}}} \cdot N_{neutrons}^{FV})}{c_{i}^{\bar{\mathsf{v}}} N_{i}^{\bar{\mathsf{v}} MC CC0 \pi} / (\Phi^{\bar{\mathsf{v}}} \cdot N_{protons}^{FV}) + c_{i}^{\mathsf{v}} N_{i}^{\bar{\mathsf{v}} MC CC0 \pi} / (\Phi^{\bar{\mathsf{v}}} \cdot N_{neutrons}^{FV})}$$

δp_{TT}

FIG. 1. Schematic illustration of the double-transverse kinematics. The incoming and outgoing particle momenta are represented by \vec{p}_{ν} and \vec{p}_{l} , $\vec{p}_{\rm p}$ and \vec{p}_{π} , respectively. The double-transverse momentum imbalance, $\delta p_{\rm TT}$ is given by $p_{\rm TT}^{\rm p} + p_{\rm TT}^{\pi}$ with respect to the axis $\vec{z}_{\rm TT}$ defined by $\vec{p}_{\nu} \times \vec{p}_{l}$.

Phys. Rev. D 92, 051302(R)

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

$CC1p1\pi$ on hydrogen

- Cross-section measurement on H allows measure of $\sigma(v + p)$ without nuclear effects
- Can use δp_{TT} to isolate H content of composite target *

• Aim to measure Δ^{++} production on H

* Phys. Rev. D 92, 051302(R)

NuFact 2016, Quy Nhon, Vietnam

Reconstructing the Neutrino Direction

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

Pauli Blocking

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

59

T2/K

0.5

1.5

2.5

 E_{ν} (GeV)

Interaction Modes in selected 1 ring μ -like events at SuperK(NEUT):

0^L0

0.5

1.5

2

 $\begin{array}{c} 2.5 \\ E_{\rm v} \, ({\rm GeV}) \end{array}$

Stephen Dolan

NuFact 2016, Quy Nhon, Vietnam

ND280 Off-Axis CC0 π Result

NuFact 2016, Quy Nhon, Vietnam