To CCQE and Beyond

Results and prospects of latest CCQE-like analyses from the T2K near detectors

Stephen Dolan

For the T2K Collaboration

s.dolan@physics.ox.ac.uk
Overview

• The T2K experiment
• Motivation for measuring CCQE-like cross sections
• Flux and near detectors’ details
• NuFact 15 recap
• CC0π on water cross section using the PØD
• FGD1 analyses using proton information
 - CC0π using proton kinematics
 - CC0π using inferred kinematic imbalance
 - CC0π using transverse kinematic imbalance
• Other analyses
 - CC0π measurements from ν + ν̄ joint fit
 - CC0π at INGRID
 - Extraction of free nucleon cross section using δp_{TT}
• Summary and future work
The T2K Experiment

Far Detector
Super-Kamiokande

Near Detectors
Off-Axis: ND280
On-Axis: INGRID

Super-Kamiokande

Muon Neutrino Beam

Mt.Ikenoyama 1,360m

sea level 1,000m

295km
Data Collection

- Continuous rise in beam power from ~225 kW (2014) to ~420 kW (2016)
- Using this to make world leading measurements of oscillation parameters (see talk by Benjamin Quilain – WG1, Tuesday, 14:00)

27 May 2016
POT total: 1.510×10^{21}

\(\nu\)-mode POT: 7.57×10^{20} (50.14%)
\(\bar{\nu}\)-mode POT: 7.53×10^{20} (49.86%)
Neutrino Scattering and OA

• Oscillation analysis (OA) requires E_ν spectrum (or similar)

• Can reconstruct using observed μ assuming stationary target and elastic scattering

$$E_{\nu,\text{rec}} = \frac{m_p^2 - m_n^2 - m_\mu^2 + 2m_n E_\mu}{2(m_n - E_\mu + p_\mu \cos(\theta_\mu))}$$

Bias due to Fermi Moton and CCnonQE components
Neutrino Scattering and OA

- Essential to understand $\nu - N$ scattering to control the bias
 - CCQE particularly important for T2K
- Probe using CC0π cross sections
 - Less FSI model dependence
 - Simplest channel to probe nuclear effects.

Interaction Modes in CC0π (NEUT):

- CCQE 80.60%
- 2p2h 12.11%
- RES 6.91%
- Other 0.38%

\[\text{Interaction Modes in CC0} \pi \text{ (NEUT):} \]

\[\text{CCQE } 80.60\% \]
\[\text{2p2h } 12.11\% \]
\[\text{RES } 6.91\% \]
\[\text{Other } 0.38\% \]
The Flux

- Off-axis ν_μ beam
 - Tightly-peaked at 600 MeV 2.5° off-axis towards SK
 - Low contamination from non-ν_μ components
 - Flux estimation aided by hadron production measurements from NA61/SHINE at CERN (see talk at WG1+2 session on Thursday 10:45)

Phys. Rev. D 87, 012001

Peak: 0.6 GeV
Peak: 1.1 GeV

Phys. Rev. D 87, 012001
INGRID (on axis)

On Axis ~ 1.1 GeV

Peak E_ν

Off Axis ~ 0.6 GeV

INGRID Modules: Stacks of scintillator bars interleaved with Iron sheets.

Front View:

Top View:

Proton Module: Fully active polycarbonate scintillator tracker.
ND280 (off axis)

On Axis ~ 1.1 GeV

Peak E_{ν}

Off Axis ~ 0.6 GeV

π^0 detector (PØD): Interwoven heavy targets, scintillator and drainable water bags affords water subtraction measurements.

UA1 Magnet:
Provides 0.2 T field.

Fine-Grained Detectors (FGD 1/2):
Polycarbonate scintillator bars provide tracking & target mass. FGD 2 also contains water target layers.

Time Projection Chambers (TPC): Excellent tracking allows high-resolution charged-particle momenta and accurate particle ID.
From Reconstruction to Truth

- Measure *selected* number of CC0π events in bins of a *reconstructed* quantity
- Need the *total* number of CC0π events in bins of a *true* quantity

Two Methods

Template Fit

- Use MC to build unsmearing matrix
- Apply unsmearing matrix + efficiency correction to data

Matrix Unfold

- True bin \rightarrow Reco Template
- Vary MC template norm to fit data
- Apply efficiency correction
Previously at NuFact

- The T2K experiment
- Motivation for measuring CCQE-like cross sections
- Flux and near detectors’ details

- NuFact 15 recap
- CC0\(\pi\) on water cross section using the PØD
- FGD1 analyses using proton information
 - CC0\(\pi\) using proton kinematics
 - CC0\(\pi\) using inferred kinematic imbalance
 - CC0\(\pi\) using transverse kinematic imbalance

- Other analyses
 - CC0\(\pi\) measurements from \(\nu + \bar{\nu}\) joint fit
 - CC0\(\pi\) at INGRID
 - Extraction of free nucleon cross section using \(\delta p_{TT}\)

- Summary and future work
INGRID On-Axis CCQE Result

- Carbon Target

- 2-bin measurement in neutrino energy

- Split into 1- and 2-track samples

- Used cuts on muon and proton kinematic variables to enhance purity

- Result depends on nuclear model used and the presence of 2p2h

ND280 Off-Axis CC0\(\pi\) Result

- Uses FGD1 as a CH target alongside TPC for tracking
- Flux integrated double-differential CC0\(\pi\) cross section in final state muon kinematic variables (\(p_\mu, \cos(\theta_\mu)\))
- Split into two analyses with different selection and cross-section extraction strategies - Good agreement
- Results compared to 2p2h models

Detector: ND280 – FGD1 **Target:** Carbon **Signal:** CC0\(\pi\) **Unfolding:** Matrix + Fit **Status:** Phys. Rev. D 93, 112012

ND280 Off-Axis $\text{CC0}\pi$ Result

- Results compared to Martini et al. model with(red)/without(black) 2p2h
- Data prefer a 2p2h contribution

Detector: ND280 – FGD1
Target: Carbon
Signal: CC0\pi
Unfolding: Matrix + Fit
Status: Phys. Rev. D 93, 112012
What next?

• Would like to disentangle the role of separate nuclear effects

• Current results provide an important piece of the puzzle

• Now need complementary measurements ...
Ongoing measurements

• **CC0π** water cross section in muon kinematics
 - Measure of A-scaling, invaluable for OA

• **CC0π** measurement using muon + proton kinematics
 - Enhanced sensitivity to nuclear effects

• **CC0π** measurement using composite variables
 - Imbalance between the proton and muon can be a precision probe of nuclear effects

• **CC0π** using INGRID proton module
 - Model-independent measurement at higher E_ν

• **CC0π** neutrino/anti-neutrino joint fit
 - $\sigma_{np-nh}/\sigma_{CCQE}(E_\nu)$ is substantially different for ν_μ and $\bar{\nu}_\mu$

• Measurement of free-nucleon cross section using δp_{TT}

N.B: T2K employs a blind cross-section analysis strategy
- Ongoing or recently completed analyses not applied to real data (remain “blind”)

New PØD analysis

FGD1 ongoing analyses using proton information

Other FGD1 / INGRID analyses
PØD - CC0π on water

- The T2K experiment
- Motivation for measuring CCQE-like cross sections
- Flux and near detectors’ details
- NuFact 15 recap

- CC0π on water cross section using the PØD
- FGD1 analyses using proton information
 - CC0π using proton kinematics
 - CC0π using inferred kinematic imbalance
 - CC0π using transverse kinematic imbalance

- Other analyses
 - CC0π measurements from ν + ν̄ joint fit
 - CC0π at INGRID
 - Extraction of free nucleon cross section using δpTT

- Summary and future work
CC0π water cross section

- Isolate CC0π events starting in the PØD
- Separate data taking periods into when PØD water target is full/empty → subtract to get water cross section

Event Selection

- Uses PØD as a target, requires TPC for tracking
- Aim to find single μ only
- Two control samples
 - CC1π: look for 2 PØD tracks and Michel e⁻
 - CCOther: look for >2 PØD tracks

Detector: ND280 – PØD
Target: Water
Signal: CC0π
Unfolding: Matrix
Status: Unblind
CC0π water cross section

- Construct flux integrated double-differential cross section
- Results compared to GENIE and NEUT predictions
- Can also compare to FGD1 CC0π on Carbon result
- Similar studies underway using FGD2 water layers to extract Oxygen:Carbon cross section ratio

Detector: ND280 – PØD
Target: Water
Signal: CC0π
Unfolding: Matrix
Status: Unblind

Contact:
Tianlu Yuan
tianlu.yuan@colorado.edu
CC0π water cross section

- Compare results to RPA/RPA+2p2h on Carbon
- Data prefer 2p2h contribution
- Difficult to untangle role of A-Scaling

Detector: ND280 – PØD
Target: Water
Signal: CC0π
Unfolding: Matrix
Status: Unblind

Stephen Dolan
NuFact 2016, Quy Nhon, Vietnam
FGD1 - CC0π + Np

• The T2K experiment
• Motivation for measuring CCQE-like cross-sections
• Flux and near detectors details
• NuFact 15 recap
• CC0π on water cross-section using the PØD

• FGD1 analyses using proton information
 - CC0π using proton kinematics
 - CC0π using inferred kinematic imbalance
 - CC0π using transverse kinematic imbalance

• Other analyses
 - CC0π measurements from ν + ν̄ joint fit
 - CC0π at INGRID
 - Extraction of free nucleon cross-section using δp_{TT}

• Summary and future work
FGD1 CC0π Analyses

Signal

- Require one \(\mu\)-like track or one \(\mu\)-like and \(p\)-like track(s) starting in FGD1
- Use a Michel electron tag and ECal EM shower veto to reject \(1\pi\) backgrounds
- Use of many samples gives wide kinematic acceptance

Sidebands

- Require extra \(\pi\)-like track(s)

Stephen Dolan
NuFact 2016, Quy Nhon, Vietnam
22
CC0π using $\mu + p$ kinematics

- μ kinematics only tell us everything about $\nu + N$ scattering assuming a stationary target and an elastic scatter.

We may see a low-momentum, high-angle muon in a CC0π selection.

- Measuring p kinematics allows us to move beyond these assumptions.

But this could come from ...

- A low E_ν and transverse p_F
- A high E_ν and large backward p_F
- A high E_ν and large $Q^2 \rightarrow$ RES with π absorption
CC0π using $\mu + p$ kinematics

- Aim to measure CC0π cross section in bins of $\cos(\theta_\mu), \cos(\theta_p), p_p$ in samples with proton
- Use $\cos(\theta_\mu), p_\mu$ when no proton reconstructed
- Also measure proton multiplicity
- Construct flux-integrated double/triple-differential cross-section
- Fake data: GENIE*
- Nominal MC: NEUT

Detector: ND280 – FGD1
Target: Carbon
Signal: CC0π (+Np)
Unfolding: Fit
Status: Blind

* GENIE fake data contains 5.73×10^{20} POT ~T2K runs 2-4
CC0_{\pi} and inferred kinematic imbalance

- Can use proton and muon kinematics to form variables specifically engineered to probe nuclear effects

- Under **stationary target** and **elastic scattering** assumptions can infer proton kinematics from measured μ

- Non-zero imbalance between inference and measured proton indicates presence of nuclear effects or CC-non-QE interaction

- Measure:
CC0\(\pi\) and inferred kinematic imbalance

- CC1\(\pi\) sideband using Michel \(e^-\) tag
- Measure inferred kinematics in bins of \(p_\mu, \cos(\theta_\mu)\)
- Fake data: GENIE*
- Nominal MC: NEUT

* GENIE fake data contains \(5.73 \times 10^{20} \ P0T \sim T2K \ runs \ 2-4\)

Detector: ND280 – FGD1
Target: Carbon
Signal: CC0\(\pi\)+Np
Unfolding: Matrix
Status: Blind

Contact: Jiae Kim
jiae@phas.ubc.ca
Single Transverse Variables

\[\nu_\mu + n \rightarrow \mu + p \]

Detector: ND280 – FGD1
Target: Carbon
Signal: CC0\pi + Np
Unfolding: Fit
Status: Blind

No nuclear Effects
No nuclear Effects

\[p_T^l = -p_T^p \]

Detector: ND280 – FGD1
Target: Carbon
Signal: CC0\pi+Np
Unfolding: Fit
Status: Blind
Single Transverse Variables

With Nuclear Effects

Detector: ND280 – FGD1
Target: Carbon
Signal: CC0π+Np
Unfolding: Fit
Status: Blind

$p_T^l \neq -p_T^p$
Single Transverse Variables

Detector: ND280 – FGD1 Target: Carbon Signal: CC0\pi+Np Unfolding: Fit Status: Blind

With Nuclear Effects
CC0\(\pi\) and transverse imbalance

- 3 single transverse variables (STV) characterise imbalance in plane transverse to incoming \(\nu\) *
- For CCQE case any deviation from \(\delta p_T = 0, \delta \phi_T = 0\) is indicative of nuclear effects
- Minimal dependence on \(E_\nu\) for \(\delta p_T\) and \(\delta \alpha_T\)

*Phys. Rev. C 94, 015503
CC0π in STV - Fermi Motion and FSI

- Moving from CCQE→CC0Pi+Np, STV still a probe of nuclear effects

NuWro, 0.6 GeV νμ on C, CC0π, FSI Off

Quasi-real CC0Pi selection, keep events within rough ND280 acceptance:
- No Pions, 1 Muon, >0 Protons. \(p_\mu > 250 \text{ MeV}, p_p > 450 \text{ MeV}, \cos(\theta_\mu) > -0.6, \cos(\theta_p) > 0.4 \)

Detector: ND280 – FGD1 **Target**: Carbon **Signal**: CC0π+Np **Unfolding**: Fit **Status**: Blind

CC0\(\pi\) in STV - 2p2h and \(M_A\)

- STV shape invariant with \(M_A\)
 - No ambiguity over \(M_A\) or nuclear effect contributions (MiniBooNE \(M_A\) puzzle)

<table>
<thead>
<tr>
<th>Detector: ND280 − FGD1</th>
<th>Target: Carbon</th>
<th>Signal: CC0(\pi)+Np</th>
<th>Unfolding: Fit</th>
<th>Status: Blind</th>
</tr>
</thead>
</table>

NuWro, 0.6 GeV \(\nu_\mu\) on C, CC0\(\pi\), FSI On, LFG
CC0π in STV

- Restrict cross section to ND280 acceptance
- Use a regularised template fit to unfold
 - Useful to deal with large STV smearing
 - Regularisation insists cross-sections should be smooth

- Fake data: GENIE*
- Nominal MC: NEUT

\[
\begin{align*}
 p_\mu &> 250 \text{ MeV/c} \\
 \cos(\theta_\mu) &> -0.6 \\
 450 \text{ MeV/c} &< p_\mu < 1 \text{ GeV/c} \\
 \cos(\theta_p) &> 0.4
\end{align*}
\]

* GENIE fake data contains \(5.73 \times 10^{20} \text{ POT} \sim \text{T2K runs 2-4} \)

Detector: ND280 – FGD1 \hspace{1cm} **Target:** Carbon \hspace{1cm} **Signal:** CC0π+Np \hspace{1cm} **Unfolding:** Fit \hspace{1cm} **Status:** Blind

Contact: Stephen Dolan
s.dolan@physics.ox.ac.uk
FGD - CC0π + Np

- The T2K experiment
- Motivation for measuring CCQE-like cross sections
- Flux and near detectors’ details
- NuFact 15 recap
- CC0π on water cross section using the PØD
- FGD1 analyses using proton information
 - CC0π using proton kinematics
 - CC0π using inferred kinematic imbalance
 - CC0π using transverse kinematic imbalance
- Other analyses
 - CC0π measurements from $\nu + \bar{\nu}$ joint fit
 - CC0π at INGRID
 - Extraction of free nucleon cross section using δp_{TT}
- Summary and future work
Other Analyses

- **CC0π ν + ν̄ joint fit**
 - Contact: Ciro Riccio, riccioc@na.infn.it
 - 2p2h contribution is different for ν and ν̄ *
 - Aim to extract ν̄ double-differential cross section in pμ, cos(θμ) with ν + ν̄ sum, difference, asymmetry

Detector: ND280 – FGD1
Target: Carbon
Signal: CC0π
Unfolding: Fit
Status: Blind

- **INGRID CC0π Analysis**
 - Contact: Benjamin Quilain, quilain@llr.in2p3.fr
 - Extract CC0π on Carbon in pμ, cos(θμ) in proton module (Eνpeak ~ 1.2 GeV)
 - Complements similar FGD1 analysis (Eνpeak ~ 0.6 GeV)

Detector: INGRID
Target: Carbon
Signal: CC0π
Unfolding: Matrix
Status: Blind

- **CC1π1p on hydrogen**
 - Use δpTT to isolate H in composite target **
 - Measure Δππ production
 - Free of nuclear effects

Detector: ND280 – FGD1
Target: Hydrogen
Signal: CC1π1p
Unfolding: Fit
Status: Blind

** XG Lu: PHYSICAL REVIEW. D 92, 051302(R)
Contact: David Coplowe, david.coplowe@lmh.ox.ac.uk

* M Martini: PHYSICAL REVIEW C 80, 065501, PHYSICAL REVIEW C 81, 045502

Contact:
Ciro Riccio, riccioc@na.infn.it
Benjamin Quilain, quilain@llr.in2p3.fr
David Coplowe, david.coplowe@lmh.ox.ac.uk

** T2K Work In Progress

** XG Lu: PHYSICAL REVIEW. D 92, 051302(R)
Contact: David Coplowe, david.coplowe@lmh.ox.ac.uk
Summary

• T2K is measuring cross-sections of exclusive final-state topologies
 - This talk: CC0\(\pi\)
 - Talk by Erez Reinherz-Aronis: CCInc, CC1\(\pi^+\), NCE (WG2, Friday, 10:45)

• Lots going on in T2K cross-section analyses – many results coming soon!

• First CC0\(\pi\) water cross section has been measured

• Many new techniques in use to complement each other and existing results
 - Analyses specifically engineered to probe nuclear effects
The Future
Thank you for listening

cảm ơn
Ongoing measurements

- **CC0π** water cross-section in muon kinematics
 - Measure of A scaling, invaluable for OA
 - Detector: ND280 – PØD
 - Target: Water
 - Signal: CC0π
 - Unfolding: Matrix
 - Status: Unblind

- **CC0π** measurement using muon + proton kinematics
 - Enhanced sensitivity to nuclear effects
 - Detector: ND280 – FGD1
 - Target: Carbon
 - Signal: CC0π(+Np)
 - Unfolding: Fit
 - Status: Blind

- **CC0π** measurement using inferred kinematics
 - Imbalance as a precision probe of nuclear effects
 - Detector: ND280 – FGD1
 - Target: Carbon
 - Signal: CC0π+Np
 - Unfolding: Matrix
 - Status: Blind

- **CC0π** measurement using STV
 - Imbalance as a precision probe of nuclear effects
 - Detector: ND280 – FGD1
 - Target: Carbon
 - Signal: CC0π+Np
 - Unfolding: Fit
 - Status: Blind

- **CC0π** using INGRID proton module
 - Model independent measurement at higher E_ν
 - Detector: ND280 – FGD1
 - Target: Carbon
 - Signal: CC0π
 - Unfolding: Fit
 - Status: Blind

- **CC0π** neutrino/anti-neutrino joint fit
 - $\sigma_{np-nh}/\sigma_{CCQE}(E_\nu)$ is substantially different for ν_μ and $\bar{\nu}_\mu$
 - Detector: INGRID
 - Target: Carbon
 - Signal: CC0π
 - Unfolding: Matrix
 - Status: Blind

- Measurement of free-nucleon cross-section using δp_{TT}
 - Detector: ND280 – FGD1
 - Target: Hydrogen
 - Signal: CC1π1p
 - Unfolding: Fit
 - Status: Blind

New PØD analysis
Ongoing FGD1 analyses using proton information
Other FGD1 / INGRID analyses
BACKUPS
Likelihood Fitting

- Each true bin has some template in reconstructed bins.
- Varying the number of events in a true bin applies a normalisation factor to the corresponding reconstructed template.
- Vary templates until reconstructed distribution best fits the data.

I.e. minimise:

$$\chi^2_{stat} = \sum_{j}^{\text{reco bins}} 2(N_j^{MC} - N_j^{obs}) + N_j^{obs} \ln \left(\frac{N_j^{obs}}{N_j^{MC}} \right)$$
Fitting summary

- The best fit parameters are those that minimise the following likelihood:

\[
\chi^2 = \chi^2_{\text{stat}}(\text{fit goodness}) + \chi^2_{\text{syst}}(\text{penalty}) + \chi^2_{\text{reg}}.
\]

\[
\chi^2_{\text{stat}} = \sum_{i} \text{recobins} \ 2(N_j^{MC} - N_j^{obs} + N_j^{obs} \ln \frac{N_j^{obs}}{N_j^{MC}})
\]

\[
\chi^2_{\text{syst}} = (\vec{a}^{\text{syst}} - \vec{a}^{\text{prior}})(V_{\text{cov}})^{-1}(\vec{a}^{\text{syst}} - \vec{a}^{\text{prior}})
\]

\[
\chi^2_{\text{reg}} = p_{\text{reg}} \sum_{i} (c_i - c_{i-1})^2
\]
Systematics in the fitter

• Add term to the fit

$$\chi^2_{syst} = (\tilde{a}_{syst} - \tilde{a}_{prior})(V_{cov})^{-1}(\tilde{a}_{syst} - \tilde{a}_{prior})$$

• The fit is able to constrain systematic parameters (mostly through control regions) but picks up a penalty if it moves far from the prior.

• **Detector Systematics** (e.g. TPC momentum resolution):
 • Make many toy experiments, each varying detector properties we are unsure of.
 • Produce covariance matrix which tells the fit the overall uncertainty in the number of events in each bin and how this correlates between bins.

• **Model Systematics** (e.g. $M_{A,RES}$, pion FSI):
 • Use covariance matrix produced from external data fits which tells us the uncertainty on model parameters.
 • Make splines that tell the fitter how to reweight the MC if we alter model parameters that describe the background In the fit.

• **Flux Systematics**:
 • Use covariance matrix produced by beam group which tells us the uncertainty on the flux in bins of neutrino energy.
 • Store the neutrino energy of each event in the fit.
Regularising the fitter

- Reaching a fit result is an ‘ill posed problem’ -> there are often degeneracies in the fit solutions.
- E.g. can often lower a particular template scaling parameter so long as we raise the adjacent parameters
 - Strong anti correlations between bins!
- Can resolve with regularisation:
 - Add another term
 - Regularisation loosely ties bins together
- But how to choose the best p_{reg}?
- Want to have the maximum smoothing impact with the minimal effect on the χ^2 of the fit.
 - This problem is well studied, can choose p_{reg} using the “L-Curve”.
- Toy example fitting a Gaussian from a flat prior in backups.

$\chi^2_{reg} = p_{reg} \sum_i (c_i - c_{i-1})^2$
Regularising the fitter

Regularisation

- Penalty term in my fit from regularisation:

\[\chi_{reg}^2 = p_{reg} \sum_i (c_i - c_{i-1})^2 \]

This looks like a rather non \(\chi^2 \)-like term slapped onto the fit...

But could also write it as:

\[\chi_{reg}^2 = p_{reg} (p - p_{prior})(V_{cov})^{-1}(p - p_{prior}) \]

\[
(V_{cov})^{-1} = \begin{bmatrix}
1 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & 2 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
0 & 0 & 0 & -1 & 1 \\
\end{bmatrix}
\]

Or to make the matrix non-singular:

\[
(V_{cov})^{-1} = \begin{bmatrix}
1 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & 2 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
0 & 0 & 0 & -1 & 2 \\
\end{bmatrix}
\]

- Applying a penalty term in this way makes regularisation enter the fit identically to model parameters.

- In fact in some sense the application of regularisation is a model that says cross sections should be smooth relative to their prior.

- The uncertainty in the smoothness model is then \(1/\sqrt{p_{reg}} \).
PØD - CC0\(\pi\) on water

Analysis Strategy
- MC used to generate purity, efficiency, and unfold data
- Water in Result → Subtract → Water out Result
- Identical procedure for water-out
- Sidebands for data-driven background constraint

Systematic Errors
- Corrections include: flux tuning, interaction model correction, EMC effect tuning, and pile-up correction
- Systematics include: flux uncertainties, interaction model uncertainties, and detector uncertainties
- Numerical propagation via throws of perturbed MC distributions
- Largest source is the flux uncertainty

PØD
- PØD-ECals consist of alternating layers of scintillator and lead
- Water target consists of alternating layers of scintillator, brass, and water
- Scintillation measured with wavelength-shifting fiber, readout via MPPCs
- Water can be drained

Equation
- The number of events on oxygen is given by
 \[N_i^D = \frac{U_i^W}{U_i^W} \frac{N_i^W}{N_i^W} \]
- \(U_i^W \) and \(U_i^W \) indicate true and recon bins,
- \(N_i^W \) is the number of events in the bin,
- \(R \) the flux normalization ratio,
- \(\varepsilon \) the selection efficiency, and \(U \) the unfolding matrix.

Then the cross section is

\[d\sigma = \frac{N_i^D}{F^*N_nD_i} \]

where \(F \) is the integrated flux, \(N_n \) the number of nucleons, and \(D_i \) the bin width.
PØD - CC0π on water

Less forward-going

More forward-going

detector
mass
flux
cross-section
fsi
statistical (mc)
statistical (data)
NEUT (tuned)
data (unfolded)
GENIE
PØD - CC0π on water

T2K Preliminary

T2K Preliminary

T2K Preliminary

T2K Preliminary

T2K Preliminary

T2K Preliminary

CC0π on water

Martini CCQE w. RPA on C

Martini CCQE w. RPA+2p2h on C
PØD - CC0π on water

T2K Preliminary

CC0π on water

CC0π on carbon (FGD1)
FGD2 Oxygen Cross Section

- Measure the cross section on **oxygen** and **carbon** simultaneously fitting events starting in FG2 water and carbon layers

\[
N = \left(c_i N_{i,\alpha,MC}^{\text{sig},C} + o_i N_{i,\alpha,MC}^{\text{sig},O} + N_{i,\alpha,MC}^{\text{bkg}} \right) \times f(r_{\alpha}^{\text{det}}, a_{\alpha}^{\text{model}}, \Phi)
\]

- **Carbon**
- **Oxygen**

\(i = p_\mu, \cos \theta_\mu \) bins
\(\alpha = X \) and \(Y \) FG2 layers

- **Contact:** Margherita Buizza Avanzini
 buizza@llr.in2p3.fr

- Extract **flux integrated Oxygen cross section and ratio oxygen/carbon flux integrated cross sections**

\[
\frac{d\sigma}{dp_\mu} = \frac{o_i N_{MC}^{\text{sig},O}}{\Phi \cdot N_{\text{neutrons}}^{FV,O}} \cdot \Delta p_\mu
\]

\[
\frac{o_i N_{MC}^{\text{sig},O}}{c_i N_{MC}^{\text{sig},C}} \quad \frac{N_{\text{neutrons}}^{FV,O}}{N_{\text{neutrons}}^{FV,C}}
\]
INGRID CC0Pi Analysis

- Select 1 μ-like track beginning in the proton module
- Measure θ_μ^{rec} and d_μ^{rec} - distance penetrated through the iron (no B field)
- Unfold into θ_μ^{true} and p_μ^{true}
- Build double differential cross-section
- With 4 momentum bins and 5 angular bins uncertainty is 10%-20%
- Blind analysis

NEUT MC, 5.8 \times 10^{20} POT

- Flux
- XS
- Stat.
- Work-in-progress
CC0Pi $\nu + \bar{\nu}$ joint fit

- 2p2h contribution is different for ν and $\bar{\nu}$ *
- Comparison of $\nu + \bar{\nu}$ can help identify 2p2h
- Aim to extract $\bar{\nu}$ double differential cross-section in $p_\mu, \cos(\theta_\mu)$ alongside $\nu + \bar{\nu}$ sum, difference and asymmetry
- Uses extra high angle and backward $\mu^+/-$ samples
- Cross-section extraction via a likelihood template fit
- Blind analysis

3.24x10^20 POT

* M Martini: PHYSICAL REVIEW C 80, 065501 (2009), PHYSICAL REVIEW C 81, 045502 (2010)
CC0Pi $\nu + \bar{\nu}$ joint fit measurements

$$c_i^\nu N_i^\nu_{MC CC0\pi}, c_i^\nu N_i^\nu_{MC CC0\pi} = \text{(what we measure) number of CC0\pi events in 'true' muon p, cos}\theta \text{ bins}$$

Extract 3 measurements:

- **CC0\pi $\bar{\nu}$ flux integrated cross-section**

$$\frac{d\sigma^\nu}{dp_\mu \, d\cos\theta_\mu} = \frac{c_i^\nu N_i^\nu_{MC CC0\pi}}{\Phi^\nu \cdot N_{protons}^{FV} \Delta p_\mu \Delta \cos\theta_\mu}$$

- **sum, difference and $\nu-\bar{\nu}$ xsec** → allow to disentangle different terms of xsec (compare with 2p2h models)

$$\frac{d(\sigma^\nu \mp \sigma^\bar{\nu})}{dp_\mu \, d\cos\theta_\mu} = \frac{1}{\Delta p_\mu \Delta \cos\theta_\mu} \left[\frac{c_i^\nu N_i^\nu_{MC CC0\pi}}{\Phi^\nu \cdot N_{protons}^{FV}} \mp \frac{c_i^\nu N_i^\nu_{MC CC0\pi}}{\Phi^\nu \cdot N_{neutrons}^{FV}} \right]$$

- **asymmetry of $\nu-\bar{\nu}$ xsec** → direct effect on δ_{CP} measurement

$$\frac{d(\sigma^\nu - \sigma^\bar{\nu})}{d(\sigma^\nu + \sigma^\bar{\nu})} = \frac{c_i^\nu N_i^\nu_{MC CC0\pi}}{(\Phi^\nu \cdot N_{protons}^{FV})} - \frac{c_i^\nu N_i^\nu_{MC CC0\pi}}{(\Phi^\nu \cdot N_{neutrons}^{FV})}$$
\[\delta p_{TT} \]

\[
\{X, Y\} = \{p, \pi^+\} \text{ for } \nu + p \rightarrow l^- + \Delta^{++}
\]
or \[
\{p, \pi^-\} \text{ for } \bar{\nu} + p \rightarrow l^+ + \Delta^0
\]

FIG. 1. Schematic illustration of the double-transverse kinematics. The incoming and outgoing particle momenta are represented by \(\vec{p}_\nu \) and \(\vec{p}_l \), \(\vec{p}_p \) and \(\vec{p}_x \), respectively. The double-transverse momentum imbalance, \(\delta p_{TT} \), is given by \(p^x_{TT} + p^y_{TT} \) with respect to the axis \(\vec{z}_{TT} \) defined by \(\vec{p}_N \times \vec{p}_l \).

\[\nu_l + p \rightarrow \mu^+ + \Delta^+, E_{\nu_l} = 1 \text{ GeV} \]

NuWro

\[\text{H, downscaled by 10} \]

\[\text{d} \]

\[\text{He} \]

\[\text{C} \]

\[\text{Ar} \]

\[\text{Pb} \]

Phys. Rev. D 92, 051302(R)
CC1p1π on hydrogen

- Cross-section measurement on H allows measure of \(\sigma(\nu + p) \) without nuclear effects

- Can use \(\delta p_{TT} \) to isolate H content of composite target *

- Aim to measure \(\Delta^{++} \) production on H

* Phys. Rev. D 92, 051302(R)
Reconstructing the Neutrino Direction

Mean Neutrino Parent Decay Point (PDP)

Reconstructed Neutrino Direction

Reconstructed Interaction Vertex

Decay Tunnel

280 m

FGD 1

T2K Work In Progress

T2K Work In Progress

T2K Work In Progress

T2K Work In Progress
Pauli Blocking

\[\frac{d\sigma}{dQ^2} (10^{-38} \text{ cm}^2 \text{ nucleon}^{-1} \text{ GeV}^{-2}) \]

\[\times 10^{-3} \]

\[Q_{QE}^2 \text{ (GeV}^2) \]

\[\times 10^{-3} \]

\[\frac{d\sigma}{dp_p} (10^{-38} \text{ cm}^2 \text{ nucleon}^{-1} \text{ GeV}^{-1}) \]

\[\text{NuWro, ND280 } \nu_\mu C(\text{RFG}) \]

- Nominal
- No PB
- No FSI
- No PB, No FSI

\[p_p \text{ (GeV)} \]
Neutrino Scattering and OA

Interaction Modes in all CC0π events at ND280 (NEUT):

- CCQE: 80.60%
- 2p2h: 12.11%
- RES: 6.91%
- Other: 0.38%

Interaction Modes in selected 1 ring μ-like events at SuperK (NEUT):

- CCQE: 52.48%
- RES: 13.48%
- 2p2h: 15.12%
- Other: 18.92%
ND280 Off-Axis CC0π Result