THE HYPER-KAMIOKANDE EXPERIMENT

MARK HARTZ FOR THE HYPER-K PROTO-COLLABORATION KAVLI IPMU/TRIUMF

NUFACT 2016, ICISE, QUY NHON, VIETNAM

- Overview of the Hyper-K experiment
- The physics of Hyper-K
- Systematic errors and near/intermediate detectors
- Technical developments of the Hyper-K experiment
- Option for a Hyper-K tank in Korea
- Timeline of the Hyper-K experiment
- Summary

HYPER-K EXPERIMENT

520 kton Water Cherenkov Detector

Upgrade of J-PARC neutrino beam to 1.3 MW beam power. New/upgraded near detectors.

HYPER-K EXPERIMENT

 Fukushima
 Koriyama

 Niigata
 Tochigi

 Gunma
 Tochigi

 Baraki
 Baraki

Upgrade of J-PARC neutrino beam to 1.3 MW beam power. New/upgraded near detectors.

PHYSICS GOALS FOR HYPER-K

Probing/searching for physics beyond the standard model:

Search for CPV in the lepton sector

Determination of the neutrino mass hierarchy

Precision oscillation parameter measurement

Search for nucleon decay

Astrophysics Observatory:

Precision measurement with solar v

High statistic supernova burst v

Detection of supernova relic v

THE HYPER-K COLLABORATION

Collaboration formed in January 2015

- ~250 member and growing from 12 countries
- MOU between Tokyo University, ICRR and KEK IPNS signed for cooperation on the Hyper-K project

Hyper-K given the highest priority from the KEK Project Implementation Plan (PIP) review

THE HYPER-K DETECTOR

Hyper-Kamiokande

<u>Hyper-K Tank:</u>

60 m tall x 74 m diameter

40,000 50cm ϕ PMTs → 40% photo-coverage

260 kton mass (187 kton fiducial volume is ~10x larger than Super-K)

2 Tanks with staging:

Design was updated from original design of 2 horizontal egg-shaped tanks

Goal of design update: maintain the physics while minimizing cost \rightarrow Fiducial volume is 2/3 of original while cost is significantly reduced

Staged construction of the tanks with the second tank 6 years after first tank

THE NEUTRINO BEAM

Increase of the J-PARC beam power to 1.3 MW by 2026

750 kW will be achieved after 2018 Main Ring power supply magnet upgrade

Power improvement largely achieved through rep. rate increase from 0.4 to 0.86 Hz

Increase of protons per pulse from current 2.1e14 to 3.2e14 See WG3 parallel talks: Horns: T. Sekiguchi in Parallel Session #1 Neutrino beam line: K. Sakashita in Parallel Session #2 Accelerator: Y. Sato in Parallel Session #2

HYPER-K PHYSICS

LONG BASELINE PHYSICS

Precision measurement of the θ_{23} , Δm^2_{32} , δ_{cp} and θ_{13} parameters

10 years operation with 1.3 MW beam from J-PARC, 3:1 \overline{v} to v ratio See talk by Y. Obayashi in WG1, Parallel Session #4

DISAPPEARANCE MODE EVENT RATES

Disappearance v mode

Disappearance \overline{v} mode

	CCQE	CC non-QE	NC	Total
v beam	8947	4444	672	14110
$\bar{\nu}$ beam	12317	6040	844	19214

APPEARANCE MODE EVENT RATES

Sensitivity to $sin(\delta)$ through normalization change, $cos(\delta)$ through spectral change

APPEARANCE MODE EVENT RATES

-150^L0

0.2

0.4

0.6

0.8

Reconstructed Energy E^{rec}_v (GeV)

Hyper-Kamiokande

Sensitivity to $sin(\delta)$ through normalization change, $cos(\delta)$ through spectral change

1.2

1

-150<u></u>

0.2

0.4

0.6

0.8

Reconstructed Energy E^{rec}_v (GeV)

1.2

1

CP VIOLATION SENSITIVITY

Hyper-Kamiokande

Exclusion of $sin(\delta_{cp})=0$ at 3σ for 78% of δ_{cp} values at 5σ for 62%

21° precision at δ_{cp} =90°

7° precision at $\delta_{cp}=0^{\circ}$

ATMOSPHERIC PARAMETER DETERMINATION

0.6% uncertainty on Δm^2_{32}

Error on $sin^2\theta_{23}$ of 0.015 (at 0.5), 0.006 (at 0.45)

Rejection of the wrong octant for non-maximal mixing values of θ_{23}

ATMOSPHERIC NEUTRINOS – MASS HIERARCHY

Hyper-K has sensitivity to the mass hierarchy through the atmospheric neutrinos (parametric resonance in the multi-GeV region)

Sensitivity is further improved in combination of accelerator and atmospheric neutrinos

Can determine the hierarchy at >3 σ after 5 years, >5 σ after 10 years

See talk by J. Kameda in WG1, Parallel Session #10

NUCLEON DECAY

1 order of magnitude sensitivity improvements

Leading measurement in $e\pi^0$ mode

Competitive with DUNE in the kaon modes

With smaller tank/high photo-detector density, can achieve same performance as larger tank

Detection of neutron capture on H to reject atmospheric backgrounds

Possible due to PMT efficiency improvements

SUMMARY OF PHYSICS POTENTIAL

		2Tanks (10 yrs)
Beam	δ _{CP} precision (0°,90°)	7°-21°
(1.3 MVV)	CPV coverage (3/50)	78%/62%
	sin ² θ ₂₃ error (for 0.5)	±0.015
Atmospherics+Beam	MH determination (sin ² θ ₂₃ =0.40)	>5.3σ
	Octant (sin ² 0 ₂₃ =0.45)	5.8σ
Proton Decay	$p \rightarrow e^+ \pi^0 90\%$ CL	1.2×10 ³⁵ yrs
	$p \rightarrow \bar{\nu}K^+$ 90%CL	2.8×10 ³⁴ yrs
Solar	Day/Night (from 0/from KamLAND)	12σ/6σ
	Upturn	~5σ
Supernova	Burst	104k-158k
	Nearby galaxies	2~20 events
	Relic	98evt/4.8σ

SYSTEMATIC ERRORS AND NEAR/INTERMEDIATE DETECTORS

SYSTEMATIC ERRORS

Current T2K systematic errors

Systematic Error Type	1Re Neutrino Mode	1Re Antineutrino Mode
Far Detector Model	2.39%	3.09%
Final State/Secondary Interactions	2.50%	2.46%
Extrapolation from Near Detector	2.88%	3.22%
$v_{e}(bar)/v_{\mu}(bar)$	2.65%	1.50%
ΝC1γ	1.44%	2.95%
Other	0.16%	0.33%
Total	6.86%	7.39%

Uncertainty at the 6-7% level. Need reduction to ~3% for Hyper-K.

Dominant errors: electron (anti)neutrino cross section, near-to-far extrapolation of event rates, far detector modeling

NEAR DETECTOR UPGRADE

Near and intermediate detectors for Hyper-K are being developed to control flux and cross-section systematic errors

Hyper-Kamiokande

Will continue using the INGRID on -axis and magnetized ND280 detectors

Work within T2K to upgrade ND280 detector

Current ND280 Detectors Co

Concept for Upgrade

Two intermediate water Cherenkov detectors proposed (NuPRISM and TITUS)

Now converging on a single detector design:

 off-axis spanning to probe neutrino energy vs. final state kinematics relationship (reduced extrapolation error)

Two intermediate water Cherenkov detectors proposed (NuPRISM and TITUS)

Now converging on a single detector design:

 off-axis spanning to probe neutrino energy vs. final state kinematics relationship (reduced extrapolation error)

Two intermediate water Cherenkov detectors proposed (NuPRISM and TITUS)

Now converging on a single detector design:

 off-axis spanning to probe neutrino energy vs. final state kinematics relationship (reduced extrapolation error)

Two intermediate water Cherenkov detectors proposed (NuPRISM and TITUS)

Now converging on a single detector design:

 off-axis spanning to probe neutrino energy vs. final state kinematics relationship (reduced extrapolation error)

ELECTRON NEUTRINO CROSS SECTION

Hyper-Kamiokande

The v_e fraction in the beam increases with off-axis angle

	Off-axis angle (°)	v _e Flux 0.3-0.9 GeV	v _µ Flux 0.3-5.0 GeV	Ratio v _e /v _µ
1	2.5	1.24E+15	2.46E+17	0.507%
	3.0	1.14E+15	1.90E+17	0.600%
	3.5	1.00E+15	1.47E+17	0.679%
	4.0	8.65E+14	1.14E+17	0.760%

Reconstructed candidates in 2.5-4.0° span of NuPRISM for 1.5e21 POT

Purity for E_{rec} <1.2 GeV = 71% v_e Signal for E_{rec} <1.2 GeV = 3501

A 5% systematic error on the v_e/v_μ cross section ratio is feasible Working on improvements

- Higher purity selection
- Prospects for reducing flux errors

Hyper-Kamiokande

Baseline calibration system based on Super-K

R&D projections are in progress to develop more sophisticated calibration sources and methods for Hyper-K

DETECTOR R&D

Kamiokande

50 cm Box&Line PMT 50 cm Hybrid Photo-Detector (HPD) R12860-HQE (Box&Line dynode) R12850-HQE (Avalanche diode)

Developed
→ Photo-detector
in Hyper-K
baseline design

→ Possible further improvement of Hyper-K

Super-K PMT

Kamiokande

50 cm Box&Line PMT 50 cm Hybrid Photo-Detector (HPD) R12860-HQE (Box&Line dynode) R12850-HQE (Avalanche diode)

Developed → Photo-detector in Hyper-K baseline design

→ Possible further improvement of Hyper-K

Super-K PMT

HQE Box&Line

Hyper-Kamiokande

Developed
→ Photo-detector
in Hyper-K
baseline design

→ Possible further improvement of Hyper-K

High Quantum Efficiency Photo-cathode

Super-K PMT

HQE Box&Line

Hyper-Kamiokande

Developed
→ Photo-detector
in Hyper-K
baseline design

→ Possible further improvement of Hyper-K

High Quantum Efficiency Photo-cathode

Super-K PMT

HQE Box&Line

Hyper-Kamiokande

Developed
→ Photo-detector
in Hyper-K
baseline design

Under development → Possible further improvement of Hyper-K

High Quantum Efficiency Photo-cathode

Super-K PMT

HQE Box&Line

Kamiokande

PERFORMANCE COMPARISONS

Hyper-Kamiokande²⁵

High quantum efficiency photo-cathode +improved collection efficiency with Box&Line dynode

x2 improvement in photo detection efficiency!

PMT AFTERPULSING

- Initially, a high after-pulse rate observed in the Box&Line PMT
- Hamamatsu optimized the dynode shape, adding a hood to prevent feedback of ionized gas or light inside the dynode
- Afterpulsing rate reduced to an acceptable level

PMT TESTING

Hyper-Kamiokande

Long term testing in EGADS tanks for 1.5 years so far

- 3 Box&Line HQE PMT
- 5 Venetian Blind HQE PMTs
- 6 20 cm HPD

Two step approach to protect against chain reaction implosion:

- 1. Pressure tolerance of PMTs with x1.9 safety factor
- 2. PMT cover to prevent shockwave

Redesign of tube at neck region to increase pressure tolerance

50 tubes tested a 1.25 MPa with no failure

PMT COVER

Prototype acrylic + stainless steel cover has been developed

Limit the flow of water into evacuated area if PMT implodes \rightarrow avoid shockwave

Optimization and reduction of cost are under consideration

Byper-Kamiokande ²⁸

Implosion test carried out at 60 m and 80 m water depths

No chain implosion observed

Test in Furano, Hokkaido

MULTI-PMT OPTION

A KM3NeT inspired multi-PMT module is also being investigated Less strict pressure requirement: glass → acrylic Advantages:

- Pressure tolerance
- Directional information from PMTs, finer granularity
- Natural housing for in-water electronics

One Concept: 33 inner detector facing 3in PMTs

R&D including testing and optimization of 3in PMTs has begun

FRONT END ELECTRONICS

Hyper-Kamiokande

Front-end electronics requirements

- Wide charge dynamic range 0.1 ~ 1250 p.e.
- Good timing resolution
 ~ sub ns
- Self triggering
 ~ channel by c
 - ~ channel by channel
- Low power consumption < 1W/ch
- Place modules in the water
 Possible use of

LV Power(48V ?) Communication lines Clock (Gb/s x 4) + Counter Network Interfaces (Data flow controller) DC/DC converters Slow control /monitor Data transmitter (Charge + Timing) ----- (~ 24 Photo sensors / module ?)

Charge to Time converter or FADC (\sim 100MHz) are being studied.

KOREAN DETECTOR OPTION

Hyper-Kamiokande

Given the two tank design with staging, may benefit from building the second tank at a different baseline.

The concept for a second tank in Korea has been studied for >10 years

It is now being considered by the HK collaboration

ADVANTAGES FOR SECOND TANK IN KOREA

Advantages of second detector in Korea:

Measure CP effect at second oscillation maximum: 3 times larger

Mass hierarchy sensitivity to complement the measurement with atmospheric neutrinos

OPEN WORKSHOP ANNOUNCEMENT

Announcement of The 1st T2HKK International Workshop

- <u>When</u> : Nov. 21 22
- Where: Seoul National Univ., Korea

We invite all of you !

"Anyone" is very welcome to join this workshop !

More details of workshop coming soon

TIMELINE

2018-2025: Photo-sensor production and Hyper-K construction

Physics starts from 2026 with 1.3 MW neutrino beam

Second tank starts operation 6 years after the first tank

SUMMARY

 Hyper-K builds on the success of Kamiokande, Super-K and T2K to achieve great potential for CP violation discovery

Hyper-Kamiokande ³⁶

- Broad physics program includes mass hierarchy determination, precision oscillation parameter measurements, nucleon decay searches, solar and supernova neutrino physics
- The tank design has been re-optimized for cost savings while maintaining physics
 - Taller tank possible thanks to improved pressure tolerance of PMTs
 - Nucleon decay sensitivity maintained thanks to improved photo-detection efficiency of PMTs
- Near and intermediate detector program to address dominant systematic errors
- Option for second tank in Korea is now being considered
- Look forward to a ground-breaking and exciting physics program!

THANK YOU

PHOTOSENSORS

Super-K R3600

- Venetian blind dynode
- 11,000 employed in Super-K
 - Up to 40 m depth
- Neutrino oscillation discovery
- Goals for Hyper-K photosensors:
 - 2x increased pressure tolerance for 60 m deep tank
 - 2x increased photon detection efficiency
 - Improved time and charge resolution

CPV DISCOVERY

ATMOSPHERIC NEUTRINO EVENT RATES

Blue = normal hierarchy, red = inverted hierarchy

OCTANT REJECTION WITH ATMOSPHERIC

Capable in taking events from low energy solar neutrino to high energy atmospheric neutrinos Capable in handling extremely high trigger rates from Supernova bursts.

System has to be Stable and fault-tolerant not to lose rare events.

CAVERN STABILITY

Hyper-Kamiokande

H. Tanaka

Cavern stability analysis

- Cavern stability analyses based on geol. survey results
 - 3D finite element analysis adopting Hoek-Brown model
 - Adopt a model to treat the elastic and inelastic behaviors of rock
 - Excavation steps taken into account in stability analysis
 - Evaluate plastic region depth and design cavern support
- Confirmed the Hyper-K cavern can be constructed with the existing technologies

WATER CONTAINMENT

Water containment system H. Tanaka

- Water containment system consists of three layers of lining system:
 - Outer water-proof sheet, Concrete lining, High Density Polyethylene (HDPE) lining

Studded HPDE lining sheet

Three layers of liners are constructed simultaneously → Minimize the const. time

HYPER-K DETECTOR

PMT SUPPORT

PMT support structure

H. Tanaka

- OD ID 60 cm
- PMT support structure adopts a truss structure made of SUS members (angles)
 - Seismic response analysis confirmed earth quake do not make damage to the detector
 - even if no water in the tank
 - Top/Barrel → Hung from the ceiling
 - Bottom → Set on the ground

15