

The Deep Undergroud Neutrino Experiment (DUNE)

Michael Mooney Brookhaven National Laboratory

on behalf of the DUNE Collaboration

NuFact 2016 – ICISE, Quy Nhon, Vietnam – August 26th, 2016

DUNE Overview

- Features of DUNE:
 - **1300 km** baseline: "LBL"
 - Large (**40 kt**) LArTPC far detector and near detector
 - Far detector **1.5 km** underground
 - Wide-band, on-axis beam

- Primary physics goals:
 - v oscillations (v_{μ}/\bar{v}_{μ} disappearance, v_{e}/\bar{v}_{e} appearance)
 - MH, δ_{CP} , θ_{23} , θ_{13}
 - Nucleon decay
 - Supernova burst neutrinos

DUNE Collaboration

- ◆ *Large* collaboration: **894** collaborators from **154** institutions
- ◆ *International* collaboration: **28** countries in total

Roadmap

Beam Line

LBNF Neutrino Beam

- **LBNF** (Long Baseline Neutrino Facility): DOE/Fermilab hosted project with international participation
 - LBNF houses, and delivers beam to, detectors built by DUNE collaboration
- Horn-focused beam line similar to NuMI beam line
 - 60-120 GeV protons from Fermilab Main Injector
 - **200 m** decay pipe at $\sim 5.8^{\circ}$ pitch, angled at South Dakota (SURF)

Beam Optimization

- LBNF beam line optimized beyond design referenced in DUNE CDR
- Optimization done with genetic algorithm
- ♦ Horn shape/current and decay pipe changed → gains in oscillation physics sensitivity

Parameter	CDR Reference Design	Optimized Design
Proton Beam Energy	80 GeV	80 GeV
Proton Beam Power	1.07 MW	1.07 MW
Target	Graphite	Graphite
Horn Current	230 kA	297 kA
Horn Design	NuMI-style	Genetic Optimization
Decay Pipe Length	204 m	241 m
Decay Pipe Diameter	4 m	4 m

See NuFact 2016 LBNF Beam/Target talks by Eric Zimmerman for more detail

IATIONAL LABORATOR

Near Detector

- ND important for measuring flux, constraining nuclear effects and backgrounds (also exotic physics)
- DUNE near detector reference design: fine-grained tracker inspired by NOMAD
 - Magnetized straw-tube based tracking system
 - Pb-scintillator sampling ECAL
 - RPC-based muon tracker
 - Multiple targets (including Ar)
- Alternative/augmented near detector systems being investigated
 - e.g. high-pressure GArTPC, LArTPC (a la ArgonCube)

See NuFact 2016 DUNE ND talk by Hongyue Duyang for more detail

Far Detector: Single Phase

- Two far detector (FD) designs being considered: single phase (LAr) and dual phase (LAr + GAr)
- Single phase FD based on LBNE modular drift cells
 - Suspended Anode and Cathode Plane Assemblies (APAs and CPAs)
 - 3.6 m drift with 500 V/cm E field
 - Cold digital electronics to reduce noise levels (maximize S/N)

BKL

Single Phase FD Readout

APA Geometry

- Three wire plane views:
 - First induction plane (wrapped, 35.7°)
 - Second induction plane (wrapped, 35.7°)
 - Collection plane (vertical)
- Wrapping reduces complexity of cold cabling and number of readout channels
 - Photon detectors sit within frames

Far Detector: Dual Phase

- Dual phase TPC inspired by LBNO design
- ◆ 12 m vertical drift, 500 V/cm (1.5-4.5 kV/cm) E field in LAr (GAr)
- ◆ Amplification via Large Electron Multiplier (LEM) a "big GEM"
- Partially cold electronics which are still accessible for maintenance

Dual Phase FD Readout

- Two orthogonal collection plane views, interleaved
 - Interleaving evenly distributes electrons between planes
- Excellent S/N via gain obtained with GAr
- PMTs at bottom of cryostat

IATIONAL LABORATOR

Far Detector Prototypes

- Two FD prototypes being built at CERN (one for each FD design) – in test beam
 - Detectors operational in 2018
- Tertiary beam lines aiming to provide
 0.5-5 GeV e[±], μ[±], π[±], K[±], p, p̄

Two ProtoDUNEs

- **Full-scale** engineering prototypes for far detectors
 - Single phase: full-sized APAs and CPAs, full drift distance and E field
 - Dual phase: full-sized readout/cathodes, half drift distance, operating • at full and double E field
 - Test of component installation, commissioning, and performance ٠
- Also important for tests of FD calibration and reconstruction software tools

Physics Reach

Neutrino Oscillations

See NuFact 2016 DUNE Oscillations talk by Dan Cherdack for <u>much</u> more detail

- ν_e appearance amplitude depends on θ₁₃, θ₂₃, δ_{CP}, and matter effects
 - Measurement of all osc. parameters possible in DUNE
- Large value of sin²(2θ₁₃) allows significant ν_e appearance sample

Matter Asymmetry

Electrons are present in matter while positrons and other leptons are not.

Charged-Current Coherent Forward Scattering on Electrons: v_e only

CP asymmetries in $\nu_{\,\mu} \,{\rightarrow}\, \nu_{\,e}$ at 1 st osc. node

- CC matter effects occur for ν_e only ν
 _e (and ν_µ, ν_τ) have only NC matter effect interactions
- Normal hierarchy: matter effect enhances v_e appearance probability and suppresses v
 _e appearance probability (opposite for inverted hierarchy)

Matter Asymmetry

CP asymmetries in $v_{\mu} \rightarrow v_{e}$ at 1 st osc. node **Electrons are present in matter while** positrons and other leptons are not. 1300 NH, δ cp = 0 vacuum, δ _{cp} = -90 ° ν_e vacuum, δ cp = -45 ° vacuum, δ _{cp} = -20 ° 0.7 vacuum, δ cn = -10 ° 0.6 W e Matter asymmetry **Charged-Current Cohere** very important for **Scattering on Elect** long-baseline v_e only experiments! 10³ Baseline (km) CC matter effects oc v_{μ} , v_{τ}) have only NC

matter effect interactions

 Normal hierarchy: matter effect enhances v_e appearance probability and suppresses v
_e appearance probability (opposite for inverted hierarchy)

Appearance Prob. vs. MH/ δ_{c}

<u>Note</u>: DUNE flux has been updated from that shown in these plots

Longer baseline enables the extraction of both MH and δ_{CP} , even w/ 1st osc. maximum only (but 2nd helps)

Impact of Baseline Length

BROOKHAVEN National Laborator

290 km Baseline

1000 km Baseline

- <u>Example of impact of baseline length</u>: say you measure neutrinoantineutrino appearance asymmetry of 0.2
- Using 1st oscillation node (focus on **black lines**), MH ambiguous at shorter baselines but degeneracy broken at longer baselines
 - 1300 km is near optimal baseline for these measurements

Calculating Sensitivities

- GLoBES-based fit to four samples in FD
 - v_e / \overline{v}_e appearance
 - $v_{\mu} / \overline{v}_{\mu}$ disappearance

ATIONAL LABORATORY

- Both reference and optimized beam design shown
- Reconstructed spectra predicted using detector response parameterized at single particle level
- Simple systematics treatment for now

- <u>Exposure</u>: 300 kt-MW-yr = 40 kt × 1.07 MW × $(3.5 v + 3.5 \bar{v})$ years
- Includes simple normalization systematics and oscillation parameter variations
- At this exposure, already determine MH, $\sim 5\sigma$ CPV for $\delta_{CP} = \pm \pi/2$

Osc. Parameter Resolution

 $sin^2(2\theta_{13})$ Resolution $sin^{2}(\theta_{23})$ Resolution δ_{CP} Resolution 40r 0.02n 0.04 **DUNE Sensitivity DUNE Sensitivity DUNE Sensitivity Normal Hierarchy** Normal Hierarchy **Normal Hierarchy** 0.018F 35 0.035 $\sin^2 2\theta_{13} = 0.085$ $\sin^2 2\theta_{13} = 0.085$ $\sin^2 2\theta_{13} = 0.085$ 0.016 $\sin^2 \theta_{23} = 0.45$ $sin^2 \theta_{23} = 0.45$ $\sin^2\theta_{23} = 0.45$ **30** $\delta_{ ext{CP}}$ Resolution (degrees) 0.03 u0.014 Besolution 0.012 0.01 $\sin^2 \theta_{23}$ Resolution 0.052 0.012 0.012 NuFit 10 Uncertainty 25F 20E 0.01 sin²20:0 sin²20:13 1000:0 13 1000:0 13 15F $\delta_{CP} = 90^{\circ}$ 10 0.01 0.004 δ_{CP} = 0° 0.005 **Expected Reactor** 0 002 Uncertainty 600 800 1000 1200 1400 200 400 200 400 600 800 1000 1200 1400 800 1000 1200 1400 400 600 200 Exposure (kt-MW-years) Exposure (kt-MW-vears) Exposure (kt-MW-years)

- Exposure as a function of time in kt-MW-years
- Near end of experimental run:
 - Below 10° in δ_{CP} resolution \rightarrow important for constraining CPV models
 - Test of unitarity with independent measurement of $\theta_{_{13}}$ (using v_e / \bar{v}_e appearance vs. \bar{v}_e disappearance from reactor experiments)

BKU

Sensitivity Benchmarks

CP Violation (50% Coverage)

- Many milestones expected throughout experimental run:
 - 1% θ_{23} resolution ($\theta_{23} = 42^{\circ}$): **45** kt-MW-years
 - Definitive MH determination ($\geq 5\sigma$ for all values of δ_{CP}): **230** kt-MW-years
 - CPV at $5\sigma (\delta_{CP} = -\pi/2)$: **320** kt-MW-years
 - Reactor θ_{13} resolution: **850** kt-MW-years

Impact of Systematics

- Sensitivities based on GLoBES calculations in which systematics approximated using uncorrelated signal normalization uncertainties
 - $v_{\mu} / \overline{v}_{\mu}$: 5%; v_{e} / \overline{v}_{e} : 2% \rightarrow goal for CPV discovery in timely manner
 - Scheme approximates case of 5% correlated uncertainty (shared between all samples) and 2% uncorrelated uncertainty (for v_e / \overline{v}_e)

Sterile Neutrinos

Neutrino Energy (GeV)

ND

10

 $\Delta m_{41}^2 = 0.05 \text{ eV}^2$

 $v_{\mu} \rightarrow v_{e}$) $v_{\mu} \rightarrow v_{\mu}$)

 $(\nu_{\mu} \rightarrow \nu_{\tau})$ $(\nu_{\mu} \rightarrow \nu_{\tau})$

td. Osc. $P(v_{\mu} \rightarrow v_{\mu})$

 $10^{-1} 10^{2}$

 10^{2}

0.8

0.6

Probability

BROOKHAVEN

10⁻¹

28

Neutrino Energy (GeV)

FD

10

- Searches for sterile neutrinos at DUNE can be done using both the ND and FD
- One sign of failure of 3v paradigm: different best-fit parameters for appearance, disappearance modes

- DUNE has the potential to constraint effects from NSI
 - DUNE most capable to do this (greater matter effects at 1300 km)
- However: if NSI effects significant, DUNE could find degeneracies in the θ_{23} - δ_{CP} plane \rightarrow break degeneracies with **T2HK**

Nucleon Decay

- ◆ Test of fundamental symmetries very exciting prospect in modern physics → for example, **baryon number conservation**
 - No reason for this to be required
 - Matter-antimatter asymmetry requires baryon number nonconservation (Sakharov conditions)
- Grand Unified Theories (GUTs) make specific predictions for decay modes, lifetimes, branching ratios
 - <u>Smoking gun</u>: observation of **nucleon decay** \rightarrow e.g. in **DUNE FD**
 - Also neutron-antineutron oscillations (another DUNE physics topic)

Proton Decay Search Needs

- Detector requirements:
 - <u>Low background rate</u> cosmogenic background reduced by deep underground location of DUNE FD (atmospheric neutrinos another source to deal with)
 - <u>High signal efficiency</u> precision tracking in LArTPC helpful for kaons and complex final states
 - <u>Large exposure</u> 40-kt
 DUNE FD running 20+ years
- DUNE FD meets all of these requirements

Simulated $p \rightarrow \overline{v} K^+$ event:

BROOM

Proton Decay Sensitivity

- Sensitivity shown above for $\mathbf{p} \rightarrow \overline{\mathbf{v}} \mathbf{K}^+$ mode
- <u>Note</u>: likely longer than 4 years to reach 40 kt
- Hyper-K does better with other modes (larger fiducial volume)

Supernova Burst Neutrinos

- More than 99% of energy in supernova burst emitted in the form of O(10 MeV) neutrinos – SN1987a observation yielded insights, but many details left to be understood
- Can search for these events with low thresholds of DUNE LArTPCs
- **Timing** and **calorimetric** information can differentiate models of supernova burst from stellar core collapse

BROOKH National Lab

SN v Detection

Transition levels are determined by observing de-excitations (γ's and nucleons)

Transitions to particle-unbound levels occur with many competing de-excitation channels

Large uncertainties in nuclear data and models complicate energy reconstruction

Reconstructing true neutrino energy:

 ${\cal Q}$ is determined by measuring de-excitation gammas and nucleons

SN v Detection

Status, Plans, and Outlook

DUNE Timeline

- **– 2014** Decision made by DOE to pursue LBL physics with an international effort
 - **2015** New collaboration structure w/ LBNF and DUNE (based on LHC model)
- **2016** NOW
- **2017** Start of excavation at the far site (SURF)
- **– 2018** Two ProtoDUNE Detectors (SP & DP) operational at CERN

2019

- 2020

2021 – Start of FD installation: 1st module (single phase)

- 2022

- **2023** Continue FD installation: 2nd module (not necessarily the same design)
- **2024** 20 kt operational

2025

- 2026 – Beam operations begin at nominal power and proton energy

LArTPC Experience

- While waiting for protons on target in **2026**, we will continue to gain experience with the LArTPC technology
 - MicroBooNE (2015–2018) and SBN program (2018–2021)
 - DUNE 35-ton/311 tests (2016) and ProtoDUNEs (2018)
- **Operational experience** and high-performance **automated reconstruction** of events in data necessary for success

NuFact 2016 MicroBooNE talk by Pip Hamilton

Run 3469 Event 53223/ October 21st, 2015

- DUNE has a lot to offer the physics community:
 - Pinning down mass hierarchy, δ_{CP} , θ_{23} , and θ_{13} in a **single experiment**, enabled by long baseline (1300 km), wideband beam
 - Sensitivity to sterile neutrinos, nucleon decay, and SN burst \boldsymbol{v}
- DUNE is positioned to determine MH and see CPV at 5σ
- Much overlap with Hyper-K/T2HK, but also a lot of complementarity by having **both experiments**
 - Verification of results with different detector technologies
 - Combination of experiments allows resolving of oscillation parameter degeneracies originating from new physics
- LArTPC technology is continually being better understood with a variety of experiments (e.g. MicroBooNE)
- Beginning excavation of far site next year stay tuned!

Thanks!

BACKUP SLIDES

SURF (Lead, S. Dakota)

Electroforming laboratory

- Site has long & storied history as home to neutrino experiments
- LBNF scope: 4 detector chambers, utility cavern, connecting drifts
- Extensive preparatory work for LBNF/DUNE already done
- DOE approval pending to begin excavation & surface building

Near Detector Options

Near Detector Options

VALVE

COOLING UNIT

NATIONAL LABORATOR

Fine-Grained Tracker

Fine-Grained Tracker (FGT)

Muon Detector		
Middin Detector	Radiator (Target) Mass	7 tons
	Other Nuclear Target Mass	1–2 tons
ECAL Dipole B	Vertex Resolution	0.1 mm
	Angular Resolution	2 mrad
	E Possilution	$6\%/\sqrt{E}$
	L_e Resolution	(4% at 3 GeV)
	E_{μ} Resolution	3.5%
	$ u_{\mu}/ar{ u}_{\mu}$ ID	Yes
	$\nu_e/\bar{\nu}_e$ ID	Yes
	π^- .vs. π^+ ID	Yes
	π^+ .vs. proton .vs. ${\it K}^+$	Yes
	$NC\pi^0/CCe$ Rejection	0.1%
	$NC\gamma/CCe$ Rejection	0.2%
	$CC\mu/CCe$ Rejection	0.01%

Straw Tube Tracker (Argon target)

- \sim 3.5m×3.5m×6.5m Straw Tube Tracker (STT) (ρ ~0.1 g/cm³, X₀~6m).
 - Dipole magnetic field (B = 0.4 T).
 - 4π ECAL coverage.

٠

- 4π MuID (RPC) in dipole and up/downstream.
- Pressurized 40 Ar target $\approx \times 10$ FD statistics, and 40 Ca target.

DUNE Task Forces

- Cross-working-group teams charged with simulating, evaluating, and optimizing the performance of the three main components of the experimental design
- Beam Optimization

Near Detector Optimization

High-Pressure GAr TPC

Fine-Grained Tracker

Far Detector Optimization

Example Event Yields

	\square		
BROO	KĤ	Ń	EN
NATIONAL	LAB	ORA	FORY

arxiv:1512.06148	CDR Reference Design	Optimized Design	
ν mode (150 kt · MW · year)			
ν_e Signal NH (IH)	861 (495)	945 (521)	
$\bar{\nu}_e$ Signal NH (IH)	13 (26)	10 (22)	
Total Signal NH (IH)	874 (521)	955 (543)	
Beam $ u_e + ar{ u}_e$ CC Bkgd	159	204	
NC Bkgd	22	17	v
$ u_{ au} + ar{ u}_{ au}$ CC Bkgd	42	19	
$ u_{\mu} + ar{ u}_{\mu} CCBkgd$	3	3	
Total Bkgd	226	243	
$\bar{\nu}$ mode (150 kt \cdot MW \cdot year)			
$ u_e$ Signal NH (IH)	61 (37)	47 (28)	
$ar{ u}_e$ Signal NH (IH)	167 (378)	168 (436)	
Total Signal NH (IH)	228 (415)	215 (464)	
Beam $ u_e + ar{ u}_e$ CC Bkgd	89	105	
NC Bkgd	12	9	V V
$ u_{ au} + ar{ u}_{ au}$ CC Bkgd	23	11	
$ u_{\mu} + ar{ u}_{\mu} CC Bkgd $	2	2	
Total Bkgd	126	127	

Number of events in the $0.5 < E_v < 8.0$ GeV range, assuming 150 kt-MW-yr in each of the v and \overline{v} beam modes, $\delta_{cp} = 0.0$, and the NuFit 2014 oscillation parameters.

CPV: Hierarchy Comparison

CPV Sensitivity for NH

CP Violation Sensitivity

CP Violation Sensitivity

CPV Sensitivity for IH

MH Coverage

CPV Coverage

BROOKHAVEN

NATIONAL LABORATORY

Sensitivites vs. θ_{23}

Mass Hierarchy Sensitivity

CP Violation Sensitivity

KVER

BROOKI

NATIONAL LABORATORY

- Current long-baseline experimental sensitivity to δ_{CP} is enhanced by tension with reactor constraints
- DUNE will be able to measure δ_{CP} with the same sensitivity without the reactor constraint with a bit more running

Impact of θ_{13} Reactor Constraint BROOKHAVEN

- Current long-baseline experimental sensitivity to δ_{CP} is enhanced by tension with reactor constraints
- DUNE will be able to measure $\delta_{\mbox{\tiny CP}}$ with the same sensitivity without the reactor constraint with a bit more running

Octant Sensitivity

BROOKHAVEN National Laboratory

Dependence on Fluctuations

BROOKHAVEN National Laboratory

Example "benchmark" decay modes, but many others will also be studied.

BROOKI

NATIONAL LABORATOR

SN v Simulations

Simulated charged-current supernova $\nu_{\rm e}$ event

LArTPC simulation package

Atmospheric Neutrinos

58

ATIONAL LABORATORY

LArTPC Neutrino Interactions

BROOKHAVEN

LArTPC Reconstruction

- Full simulation of beam v, atmospheric v, PDK, and Supernova events
- Huge progress has been made on reconstruction
 - Three reconstruction packages (PMA, Pandora, WireCell)
 - Exploring other options including machine learning techniques
 - Shower / track selection, particle ID, momentum and angle reconstruction
- Use of centralized software tools and infrastructure is crucial
 - LArSoft allows for easy collaboration with other LAr TPC experiments

Determining CDR Sensitivities

BROOKHAVEN National Laboratory

• Define CPV sensitivity as:

$$\Delta \chi_{\text{CPV}}^2 = \text{Min}(\chi_{\text{test}}^2(\delta_{\text{cp}}=0), \chi_{\text{test}}^2(\delta_{\text{cp}}=\pi)) - \chi_{\text{true}}^2$$

• Define MH sensitivity as:

 $\Delta T_{\rm NH(IH)} = \chi^2_{\rm IH(NH)} - \chi^2_{\rm NH(IH)}$

- Use Asimov data sets; gives mean $\Delta\chi^2$
- Allow oscillation parameters, and systematics to vary
 - Constrain oscillation parameter values with NuFit2014 results; use 1/3rd of the 3 σ ranges
 - Estimate non-oscillation systematics with normalization parameters
 - Consider channel-to-channel and sample-to-sample correlations

Signal uncertainties of	Background	Normalization Uncertainty	Correlations	
5% on v disappearance	For $\nu_e/\bar{\nu}_e$ appearance:			
	Beam ν_e	5%	Uncorrelated in $ u_e$ and $\bar{ u}_e$ samples	
and	NC	5%	Correlated in $ u_e$ and $\bar{ u}_e$ samples	
$5 \oplus 2\%$ on v appearance	$ u_{\mu}$ CC	5%	Correlated to NC	
assume a relative calibration in the 4-sample fits	ν_{τ} CC	20%	Correlated in $ u_e$ and $ar{ u}_e$ samples	
	For $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance:			
	NC	5%	Uncorrelated to $ u_e/ar{ u}_e$ NC background	
	$ u_{ au}$	20%	Correlated to $ u_e/ar{ u}_e \ u_{ au}$ background	

Normalization Uncertainties

- Estimate uncertainties after ND and external data constraints
- Understand advantages of LAr TPC, and cancellations in FD 4sample fits
- Consider experience from T2K and MINOS
 - MINOS similarities
 - Flux shape, v energies
 - Longer baseline
 - Similar cross sections
 - T2K similarities
 - Different near and far detector technologies
 - Similar analysis strategies
 - Strategies to address required increase in precision

Source of	MINOS	T2K	DUNE
Uncertainty	$ u_e$	$ u_e$	$ u_e $
Beam Flux	0.3%	3.2%	2%
after N/F			
extrapolation			
Interaction	2.7%	5.3%	$\sim 2\%$
Model			
Energy scale	3.5%	included	(2%)
(u_{μ})		above	
Energy scale	2.7%	2.5%	2%
(ν_e)		includes	
		all FD	
		effects	
Fiducial	2.4%	1%	1%
volume			
Total	5.7%	6.8%	3.6 %
Used in DUNE			$5\% \oplus 2\%$
Sensitivity			
Calculations			