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DUNE OverviewDUNE Overview

♦ Features of DUNE:
• 1300 km baseline:  “LBL”

• Large (40 kt) LArTPC far 
detector and near detector

• Far detector 1.5 km 
underground

• Wide-band, on-axis beam
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♦ Primary physics goals:
• ν oscillations (νμ/νμ disappearance, 

νe/νe appearance)

– MH, δCP , θ23 , θ13

• Nucleon decay

• Supernova burst neutrinos

FNALSURF



DUNE CollaborationDUNE Collaboration

♦ Large collaboration:  894 collaborators from 154 institutions

♦ International collaboration:  28 countries in total
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Part IPart I
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Beam Line,
Near/Far Detectors,

and Prototypes



RoadmapRoadmap
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FNALSURF

Beam
Line



LBNF Neutrino BeamLBNF Neutrino Beam
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♦ LBNF (Long Baseline Neutrino Facility):  DOE/Fermilab 
hosted project with international participation
• LBNF houses, and delivers beam to, detectors built by DUNE 

collaboration

♦ Horn-focused beam line similar to NuMI beam line
• 60-120 GeV protons from Fermilab Main Injector

• 200 m decay pipe at ~5.8° pitch, angled at South Dakota (SURF)



Beam OptimizationBeam Optimization
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♦ LBNF beam line optimized 
beyond design referenced in 
DUNE CDR

♦ Optimization done with 
genetic algorithm

♦ Horn shape/current and 
decay pipe changed  gains in →
oscillation physics sensitivity

Horn Shape Parameters

1st 
Osc. 
Max.

2nd 
Osc. 
Max.

See NuFact 2016 LBNF Beam/Target talks 
by Eric Zimmerman for more detail



RoadmapRoadmap
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FNALSURF

Near 
Detector



Near DetectorNear Detector
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♦ ND important for measuring flux, 
constraining nuclear effects and 
backgrounds (also exotic physics)

♦ DUNE near detector reference 
design:  fine-grained tracker 
inspired by NOMAD
• Magnetized straw-tube based 

tracking system

• Pb-scintillator sampling ECAL

• RPC-based muon tracker

• Multiple targets (including Ar)

♦ Alternative/augmented near detector systems being investigated
• e.g. high-pressure GArTPC, LArTPC (a la ArgonCube)

See NuFact 2016 DUNE ND talk by Hongyue Duyang for more detail



RoadmapRoadmap
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FNALSURF

Far 
Detector



Far Detector:  Single PhaseFar Detector:  Single Phase
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♦ Two far detector (FD) designs being considered:  single phase (LAr) 
and dual phase (LAr + GAr)

♦ Single phase FD based on LBNE modular drift cells
• Suspended Anode and Cathode Plane Assemblies (APAs and CPAs)

• 3.6 m drift with 500 V/cm E field

• Cold digital electronics to reduce noise levels (maximize S/N)



Single Phase FD ReadoutSingle Phase FD Readout
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♦ Three wire plane views:
• First induction plane (wrapped, 35.7°)

• Second induction plane (wrapped, 35.7°)

• Collection plane (vertical)

♦ Wrapping reduces complexity of cold 
cabling and number of readout channels

♦ Photon detectors sit within frames

APA Geometry



Far Detector:  Dual PhaseFar Detector:  Dual Phase
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♦ Dual phase TPC inspired by LBNO design

♦ 12 m vertical drift, 500 V/cm (1.5-4.5 kV/cm) E field in LAr (GAr)

♦ Amplification via Large Electron Multiplier (LEM) – a “big GEM”

♦ Partially cold electronics which are still accessible for maintenance

LEM



Dual Phase FD ReadoutDual Phase FD Readout
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♦ Two orthogonal collection 
plane views, interleaved
• Interleaving evenly distributes 

electrons between planes

♦ Excellent S/N via gain obtained 
with GAr

♦ PMTs at bottom of cryostat

LEM



Far Detector PrototypesFar Detector Prototypes
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Dual Phase ProtoDUNE

Single Phase ProtoDUNE

Tertiary Beam Lines

♦ Two FD prototypes being built at CERN 
(one for each FD design) – in test beam
• Detectors operational in 2018

♦ Tertiary beam lines aiming to provide 
0.5-5 GeV e±, μ±, π±, K±, p, p



Two ProtoDUNEsTwo ProtoDUNEs
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♦ Full-scale engineering prototypes for far detectors
• Single phase:  full-sized APAs and CPAs, full drift distance and E field

• Dual phase:  full-sized readout/cathodes, half drift distance, operating 
at full and double E field

• Test of component installation, commissioning, and performance

♦ Also important for tests of FD calibration and reconstruction 
software tools

Dual Phase
ProtoDUNE

Single Phase
ProtoDUNE



Part IIPart II
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Physics Reach



Neutrino OscillationsNeutrino Oscillations
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♦ νe appearance amplitude 
depends on θ13, θ23, δCP, 
and matter effects
• Measurement of all osc. 

parameters possible in 
DUNE

♦ Large value of sin2(2θ13) 
allows significant νe 
appearance sampleSee NuFact 2016 DUNE Oscillations talk by 

Dan Cherdack for much more detail



Matter AsymmetryMatter Asymmetry
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♦ CC matter effects occur for νe only – νe (and νμ , ντ) have only NC 
matter effect interactions

♦ Normal hierarchy:  matter effect enhances νe appearance 
probability and suppresses νe appearance probability (opposite 
for inverted hierarchy)

Charged-Current Coherent Forward 
Scattering on Electrons:

νe only

Electrons are present in matter while 
positrons and other leptons are not. 1300 

km



Matter AsymmetryMatter Asymmetry
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♦ CC matter effects occur for νe only – νe (and νμ , ντ) have only NC 
matter effect interactions

♦ Normal hierarchy:  matter effect enhances νe appearance 
probability and suppresses νe appearance probability (opposite 
for inverted hierarchy)

Charged-Current Coherent Forward 
Scattering on Electrons:

νe only

Electrons are present in matter while 
positrons and other leptons are not. 1300 

km

Matter asymmetry
very important for

long-baseline
experiments!



Appearance Prob. vs. MH/Appearance Prob. vs. MH/δδ
CP CP 
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T2HK DUNE

MH

δCP

Note:  DUNE flux 
has been updated 
from that shown 
in these plots

Longer baseline 
enables the 
extraction of 
both MH and δCP, 
even w/ 1st osc. 
maximum only 
(but 2nd helps)



Impact of Baseline LengthImpact of Baseline Length
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♦ Example of impact of baseline length:  say you measure neutrino-
antineutrino appearance asymmetry of 0.2

♦ Using 1st oscillation node (focus on black lines), MH ambiguous 
at shorter baselines but degeneracy broken at longer baselines
• 1300 km is near optimal baseline for these measurements

NH or IH? NH!

290 km Baseline 1000 km Baseline



Calculating SensitivitiesCalculating Sensitivities
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♦ GLoBES-based fit to 
four samples in FD
• νe / νe appearance

• νμ / νμ disappearance

♦ Both reference and 
optimized beam design 
shown

♦ Reconstructed spectra 
predicted using 
detector response 
parameterized at single 
particle level

♦ Simple systematics 
treatment for now

νe νe

νμνμ



MH/CPV SensitivityMH/CPV Sensitivity
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♦ Exposure:  300 kt-MW-yr = 40 kt × 1.07 MW × (3.5 ν + 3.5 ν) years

♦ Includes simple normalization systematics and oscillation 
parameter variations

♦ At this exposure, already determine MH, ~5σ CPV for δCP = ±π/2

Mass Hierarchy CP Violation



Osc. Parameter ResolutionOsc. Parameter Resolution
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♦ Exposure as a function of time in kt-MW-years

♦ Near end of experimental run:
• Below 10° in δCP resolution  important for constraining CPV models→

• Test of unitarity with independent measurement of θ13 (using νe / νe 
appearance vs. νe disappearance from reactor experiments)

δCP Resolution

Expected Reactor
Uncertainty

NuFit 1σ Uncertainty

sin2(2θ13) Resolution sin2(θ23) Resolution



Sensitivity BenchmarksSensitivity Benchmarks
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♦ Many milestones expected throughout experimental run:
• 1% θ23 resolution (θ23 = 42∘):  45 kt-MW-years

• Definitive MH determination (≥5σ for all values of δCP):  230 kt-MW-years

• CPV at 5σ (δCP = -π/2):  320 kt-MW-years

• Reactor θ13 resolution:  850 kt-MW-years

CP Violation (50% Coverage)



Impact of SystematicsImpact of Systematics
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♦ Sensitivities based on GLoBES calculations in which systematics 
approximated using uncorrelated signal normalization uncertainties
• νμ / νμ :  5%;  νe / νe :  2%    goal→  for CPV discovery in timely manner

• Scheme approximates case of 5% correlated uncertainty (shared 
between all samples) and 2% uncorrelated uncertainty (for νe / νe)

Mass Hierarchy (100% Coverage) CP Violation (50% Coverage)



Sterile NeutrinosSterile Neutrinos
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♦ Searches for sterile neutrinos at 
DUNE can be done using both the 
ND and FD

♦ One sign of failure of 3ν paradigm:  
different best-fit parameters for 
appearance, disappearance modes

A. de Gouvêa
(ICHEP 2016)

Disappearance

Appearance

3ν 4ν
3ν fits 

to both 
datasets



Experiment ComplementarityExperiment Complementarity
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♦ DUNE has the potential to constraint effects from NSI
• DUNE most capable to do this (greater matter effects at 1300 km)

♦ However:  if NSI effects significant, DUNE could find degeneracies 
in the θ23-δCP plane  break degeneracies with → T2HK

P. Coloma (ICHEP 2016)



Nucleon DecayNucleon Decay
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♦ Test of fundamental symmetries very exciting prospect in modern 
physics  for example, → baryon number conservation
• No reason for this to be required

• Matter-antimatter asymmetry requires baryon number non-
conservation (Sakharov conditions)

♦ Grand Unified Theories (GUTs) make specific predictions for decay 
modes, lifetimes, branching ratios
• Smoking gun:  observation of nucleon decay  e.g. in → DUNE FD

• Also neutron-antineutron oscillations (another DUNE physics topic)

K+
+

e+wire no.

tim
e

cathode

kaon decay
muon decay

0.5 m

ICARUS T600
Low thresholds 
and precision 

tracking of LArTPC 
technology enables 
kaon decay modes



Proton Decay Search NeedsProton Decay Search Needs
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♦ Detector requirements:
• Low background rate – 

cosmogenic background 
reduced by deep 
underground location of 
DUNE FD (atmospheric 
neutrinos another source to 
deal with)

• High signal efficiency – 
precision tracking in 
LArTPC helpful for kaons and 
complex final states

• Large exposure – 40-kt 
DUNE FD running 20+ years

♦ DUNE FD meets all of these 
requirements

Simulated p  → ν K+ event: 

Automated Reconstruction

K+

K+

+

+

e+

e+

x

z

y

z



Proton Decay SensitivityProton Decay Sensitivity
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Hyper-K, 
1900 & 5700 kt-yr
(projected from SK)

DUNE – assumes 40 kt after 4 yrs

Current Super-K limit, 260 kt-yr

♦ Sensitivity shown above for p  → ν K+ mode

♦ Note:  likely longer than 4 years to reach 40 kt

♦ Hyper-K does better with other modes (larger fiducial volume)



Supernova Burst NeutrinosSupernova Burst Neutrinos
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♦ More than 99% of energy in supernova burst emitted in the form 
of O(10 MeV) neutrinos – SN1987a observation yielded insights, 
but many details left to be understood

♦ Can search for these events with low thresholds of DUNE LArTPCs

♦ Timing and calorimetric information can differentiate models 
of supernova burst from stellar core collapse

Garching model
SNB @ 10 kpc
40 kt LArTPC



SN SN ν Detectionν Detection
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SN SN ν Detectionν Detection
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Significant complications,
but low-threshold,

high-resolution
LArTPC provides help



Part IIIPart III
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Status, Plans, and 
Outlook



DUNE TimelineDUNE Timeline
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2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

– Decision made by DOE to pursue LBL physics with an international effort

– New collaboration structure w/ LBNF and DUNE (based on LHC model)

– NOW

– Start of excavation at the far site (SURF)

– Two ProtoDUNE Detectors (SP & DP) operational at CERN

– Start of FD installation:  1st module (single phase)

– Continue FD installation:  2nd module (not necessarily the same design)

– 20 kt operational

– Beam operations begin at nominal power and proton energy



LArTPC  ExperienceLArTPC  Experience
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♦ While waiting for protons on target in 2026, we will continue to 
gain experience with the LArTPC technology
• MicroBooNE (2015–2018) and SBN program (2018–2021)

• DUNE 35-ton/311 tests (2016) and ProtoDUNEs (2018)

♦ Operational experience and high-performance automated 
reconstruction of events in data necessary for success

Low noise levels in 
MicroBooNE

Excellent purity level 
in MicroBooNE



MicroBooNE Event (Data)MicroBooNE Event (Data)
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Can see 
even very 
low-energy 
particles

Excellent 
tracking 
capability

Calorimetric 
information 
along length 
of track

C
os

m
ic

C
os

m
ic

Cosmic

BEAM

Vertex

Muon

Neutrino
Interaction
Selected w/
Automated

Reconstruction

NuFact 2016 MicroBooNE talk by Pip Hamilton



SummarySummary

♦ DUNE has a lot to offer the physics community:
• Pinning down mass hierarchy, δCP, θ23, and θ13 in a single 

experiment, enabled by long baseline (1300 km), wideband beam

• Sensitivity to sterile neutrinos, nucleon decay, and SN burst ν

♦ DUNE is positioned to determine MH and see CPV at 5σ

♦ Much overlap with Hyper-K/T2HK, but also a lot of 
complementarity by having both experiments
• Verification of results with different detector technologies

• Combination of experiments allows resolving of oscillation 
parameter degeneracies originating from new physics

♦ LArTPC technology is continually being better understood 
with a variety of experiments (e.g. MicroBooNE)

♦ Beginning excavation of far site next year – stay tuned!
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Thanks!
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BACKUP
SLIDES
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SURF (Lead, S. Dakota)SURF (Lead, S. Dakota)
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Near Detector OptionsNear Detector Options
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Fine-Grained TrackerFine-Grained Tracker
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DUNE Task ForcesDUNE Task Forces
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Example Event YieldsExample Event Yields
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CPV: Hierarchy ComparisonCPV: Hierarchy Comparison
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CPV Sensitivity for NH CPV Sensitivity for IH



MH CoverageMH Coverage
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CPV CoverageCPV Coverage
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Sensitivites vs. Sensitivites vs. θθ2323

51
May 2016



Impact of Impact of θθ1313 Reactor Constraint Reactor Constraint
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Impact of Impact of θθ1313 Reactor Constraint Reactor Constraint
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Octant SensitivityOctant Sensitivity
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Dependence on FluctuationsDependence on Fluctuations
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DUNE MH Sensitivity
Normal Hierarchy



Proton Decay SensitivityProton Decay Sensitivity
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Example “benchmark” decay modes, but many others will also be studied.



SN SN νν Simulations Simulations
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Atmospheric NeutrinosAtmospheric Neutrinos
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LArTPC Neutrino InteractionsLArTPC Neutrino Interactions
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LArTPC ReconstructionLArTPC Reconstruction
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Determining CDR SensitivitiesDetermining CDR Sensitivities
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Normalization UncertaintiesNormalization Uncertainties
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