Present status of accelerator-based neutrino oscillation measurements

Gregory Pawloski University of Minnesota

Why Accelerator Neutrinos

Create v_{μ} and $\overline{v_{\mu}}$ beams with enough energy to produce elections, muons and taus (limited) in charged-current interactions

Can study least known mixing parameters by looking at:

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance

 Δm^2_{32} (Mass Hierarchy), $\sin^2(heta_{23})$ (octant), δ_{CP}

 $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance

 $|\Delta m_{32}^2|, \sin^2(2\theta_{23})$

 $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance (OPERA observed)

 $|\Delta m_{32}^2|, \sin^2(2\theta_{23})|$

Test of unitarity by probing $U_{ au3}$

Can look for sterile neutrinos:

$$\nu_{\mu} \rightarrow \nu_{e}$$
 appearance (at 4th Δm^{2})

 $\sin^2(\theta_{24})\sin^2(2\theta_{14})$

 $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance (at 4th Δm^2) in CC and/or NC interactions $\sin^2(\theta_{24})$, $\sin^2(\theta_{34})$

 $U = \begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} \begin{pmatrix} u_{e1} & u_{e2} & u_{e3} \\ u_{\mu 1} & u_{\mu 2} & u_{\mu 3} \\ u_{\tau 1} & u_{\tau 2} & u_{\tau 3} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$ $U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta_{CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Long-baseline experiments operating in 2016

T2K (Japan)

Currently running, data collection started in 2010

NOvA (USA)

Currently running, data collection started in 2014

MINOS/MINOS+ (USA)

Data collection stopped in middle of 2016

T2K Experiment

295 km baseline

Beam Energy ~0.6 GeV

FD Water Cherenkov Detector

ND on-axis and off-axis detectors to reduce flux and cross-section uncertainties

Recorded ~20% of planned data set

- 7.48e20 POT with ν beam
- 7.47e20 POT with $\overline{\nu}$ beam

On-axis Detector

Gregory Pawloski – University of Minnesota

NOvA Experiment

810 km baseline

Beam Energy ~2 GeV

Liquid scintillator detectors

Functionally identical FD & ND

ND detector reduces flux, cross-section and selection uncertainties

Recorded ~20% of planned data set

6.05e20 POT with ν beam

MINOS Experiment

735 km baseline

MINOS Beam Energy: ~3 GeV

MINOS+ Beam Energy: ~7 GeV

Tracking calorimeter detectors

Functionally identical FD & ND

ND detector reduces flux, cross-section and selection uncertainties

10.6e20 POT with MINOS ν beam

3.4e20 POT with MINOS $\overline{\nu}$ beam

~10e20 POT (~ $^{1}\!/_{2}$ analyzed) with MINOS+ ν beam

Far Detector

Near Detector

Measurements of θ_{23} **and** $|\Delta m_{32}^2|$ Muon Neutrino Disappearance

Measurements of θ_{23} and $|\Delta m_{32}^2|$

T2K fit to $u_{\mu}
ightarrow
u_{\mu}$ and $\overline{
u_{\mu}}
ightarrow \overline{
u_{\mu}}$ disappearance

 $\Delta m_{32}^2 = [2.34, 2.75] \times 10^{-3} eV^2 (NH) \text{ at } 90\% \text{ CL}$ $\sin^2 \theta_{23} = [0.42, 0.61] (NH) \text{ at } 90\% \text{ CL}$

 $\Delta \overline{m}_{32}^2 = [2.16, 3.02] \times 10^{-3} eV^2 (NH) \text{ at } 90\% \text{ CL}$ $\sin^2 \overline{\theta}_{23} = [0.32, 0.70] (NH) \text{ at } 90\% \text{ CL}$

Neutrino and antineutrino parameters are consistent No evidence of CPT violation, NSI, etc

Gregory Pawloski – University of Minnesota

Accelerator v Status 2016

Measurements of θ_{23} and $|\Delta m_{32}^2|$

T2K fit to $u_{\mu} ightarrow u_{\mu}$ and $\overline{ u_{\mu}} ightarrow \overline{ u_{\mu}}$ disappearance

Neutrino sample best fit prefers maximal disappearance Anti-neutrino best fit prefers non-maximal value

Normal Hierarchy

Joint Fit Results:

$$\sin^2 \theta_{23} = 0.532^{+0.046}_{-0.068}$$
$$\Delta m^2_{32} = 2.545^{+0.081}_{-0.084} \times 10^{-3} eV^2$$

Gregory Pawloski – University of Minnesota

Accelerator v Status 2016

NOvA fit to $u_{\mu} \rightarrow \nu_{\mu}$ disappearance

NOvA excludes maximal mixing at 2.5σ (no Feldman Cousins correction)

Normal Hierarchy

$$\sin^2 \theta_{23} = 0.40^{+0.03}_{-0.02} (0.63^{+0.02}_{-0.03})$$
$$\Delta m^2_{32} = 2.67^{+0.12}_{-0.12} \times 10^{-3} eV^2$$

Measurements of θ_{23} and $|\Delta m_{32}^2|$ MINOS/MINOS+ beam and atmospheric fit to $(\overline{\nu_{\mu}}) \rightarrow (\overline{\nu_{\mu}})$ and $(\overline{\nu_{\mu}}) \rightarrow (\overline{\nu_{e}})$

MINOS best fit value of $\sin^2(\theta_{23})$ comparable to NOvA but results also consistent with max mixing

$$\Delta m_{32}^2 = \begin{cases} 2.42 \pm 0.09 \times 10^{-3} \,\mathrm{eV}^2 \,\,\mathrm{Normal} \\ -2.48^{+0.09}_{-0.11} \times 10^{-3} \,\mathrm{eV}^2 \,\,\mathrm{Inverted} \end{cases}$$

 $\sin^{2}(\theta_{23}) = \begin{cases} 0.35 - 0.65 \,(90\% \text{ C.L.}) \text{ Normal} \\ 0.35 - 0.66 \,(90\% \text{ C.L.}) \text{ Inverted} \end{cases}$

MINOS still competitive and still has ~ ½ of the MINOS+ data to analyze

Measurements of $\theta^{}_{23}$ octant, mass hierarchy, and $\delta^{}_{CP}$ Electron Neutrino Appearance

T2K fit to $u_{\mu}
ightarrow
u_{e}$ and $\overline{
u_{\mu}}
ightarrow \overline{
u_{e}}$ appearance

 v_e : 19.6 events (NH, $\delta_{CP} = \pi/2$) to 28.7 events (NH, $\delta_{CP} = -\pi/2$)

Predictions:

 $\overline{\nu_e}$: 7.7 events (NH, $\delta_{CP} = \pi/2$) to 6.0 events (NH, $\delta_{CP} = -\pi/2$)

Observed 4 events

Excess of v_e events above prediction favors NH and $\delta_{CP} = -\pi/2$ (3 $\pi/2$) Deficit of $\overline{v_e}$ events below prediction favors NH and $\delta_{CP} = -\pi/2$ (3 $\pi/2$)

T2K fit to $u_{\mu} ightarrow u_{e}$ and $\overline{ u_{\mu}} ightarrow \overline{ u_{e}}$ appearance

Data excludes CP conservation at 90% CL Data favors δ_{CP} near $-\pi/2$ (3 $\pi/2$) for both hierarchies

$$\delta_{cp} = [-3.13, -0.39](NH), [-2.09, -0.74] (IH) at 90\% CL$$

NOvA fit to $u_{\mu} ightarrow u_{e}$ appearance

Expected event yields depend on hierarchy, octant of θ_{23} , and δ_{CP}

NOvA fit to $u_{\mu} ightarrow u_{e}$ appearance

Observe 33 events

Data prefers NH

Similar to T2K trend

Data only likes IH for upper octant and $\delta_{CP} \approx 3\pi/2$ Similar to T2K trend

Data prefers NH lower octant for $\delta_{CP} \approx 3\pi/2$ Data prefers NH upper octant for $\delta_{CP} \approx \pi/2$

Combining NOvA $u_{\mu} \rightarrow u_{e}$ appearance and $u_{\mu} \rightarrow u_{\mu}$ disappearance

NOvA rejects δ_{CP} around $\pi/2$ for lower octant IH at 3σ

T2K similarly rejects region at 3o

MINOS has searched for sterile mediated $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance in CC and NC events Take into account potential oscillation in the ND and FD

Observed disappearance rate is consistent with 3-flavor model Set limits on θ_{24}

However LSND-style appearance in a 4-flavor model depends on:

 $\sin^2 \theta_{\mu e} \equiv \sin^2 \theta_{24} \sin^2 2\theta_{14}$

Need constraint on θ_{14}

Gregory Pawloski – University of Minnesota

Accelerator v Status 2016

Potential sterile mediated $\overline{\nu_e} \rightarrow \overline{\nu_e}$ disappearance measured in reactor experiments are sensitive to θ_{14}

NOvA has searched for sterile mediated $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance in NC events

Observe 95 NC-like events when they expect 83.71 + 9.15 (stat) + 8.28 (syst)

Observed disappearance rate is consistent with 3-flavor model Set limits on θ_{24} , θ_{34}

NOvA is expected to have a future sensitivity that can probe LSND signal at 90% CL

Current long-baseline program is making interesting measurements

- Indications that θ_{23} may be nonmaximal (mainly NOvA)
- Indications that δ_{CP} may be around $-\pi/2$ ($3\pi/2$) (NOvA and T2K)
- Indications that there might be a normal hierarchy (NOvA and T2K)
- Long baseline experiments don't see LSND-like 4-flavor mixing (mainly MINOS)
- T2K and NOvA only have less than 20% of their proposed data set

Back up slides

Short-baseline experiments

Fermilab short-baseline neutrino program

Look for sterile mediated oscillation

Liquid Argon detectors

SBND: L=110m, M=112 ton (under construction)

MicroBooNE: L= 470m, M=87 ton (started Oct 2015)

ICARUS: L= 600m, M=476 ton (under construction)

How to make a beam

Collide proton on a target, magnetically focus secondary particles into a beam, and let them decay into neutrinos

Magnet polarity determine if neutrino or antineutrino beam

Control beam energy by magnetic focusing and angle w.r.t. axis Current experiments use around GeV-scale beams

Gregory Pawloski – University of Minnesota

Opera Experiment

730 km baseline

Beam Energy ~17 GeV

Emulsion cloud chamber & electronic tracker

Can see $u_{\mu} ightarrow u_{ au}$ appearance

Measurement of v_{τ} appearance

OPERA measurement of $\nu_{\mu} ightarrow \nu_{\tau}$ appearance

OPERA sees 5 τ candidate events

with a background of 0.25 ± 0.05

5 σ discovery of u_{τ} appearance

Measurement of Δm^2_{32} consistent with other experiments 2.0 × 10⁻³ eV/² < $|\Delta m^2_{32}|$ < 5.0 × 10⁻³ eV/² at 90% CL