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Disclaimer
I have given a talk with the same title at the closing of
NuFact 2012 in Williamsburg.

So here, I will focus on what has happened since
then. . .
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The big questions in 2012

• Are neutrinos Majorana?

• δCP

• mass hierarchy

• θ23 = π/4, θ23 < π/4 or θ23 > π/4?

• Resolution of LSND and the other short-baseline
anomalies

• New physics (on top of neutrino mass)?

And essentially, we still would like to see these
questions answered in 2016.
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Status quo

A common framework for all the neutrino data is
oscillation of three active neutrinos

• ∆m2
21 ∼ 8 · 10−5 eV2 and θ12 ∼ 1/2

• ∆m2
31 ∼ 2 · 10−3 eV2 and θ23 ∼ π/4

• θ13 ∼ 0.16

This implies a lower bound on the mass of the
heaviest neutrino

√

2 · 10−3 eV2 ∼ 0.04 eV

but we currently do not know which neutrino is the
heaviest.
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Mixing matrices

Quarks

|UCKM | =





1 0.2 0.005

0.2 1 0.04

0.005 0.04 1





Neutrinos

|Uν| =





0.8 0.5 0.15

0.4 0.6 0.7

0.4 0.6 0.7
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Neutrinos are massive – so what?

Neutrinos in the Standard Model (SM) are strictly
massless, therefore the discovery of neutrino
oscillation, which implies non-zero neutrino masses
requires the addition of new degrees of freedom.
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We always knew they are . . .

The SM, likely, is an effective field theory, i.e. at some
high scale Λ new degrees of freedom will appear

LSM +
1

Λ
L5 +

1

Λ2
L6 + . . .

The first operators sensitive to new physics have
dimension 5. It turns out there is only one dimension
5 operator

L5 =
1

Λ
(LH)(LH) → 1

Λ
(L〈H〉)(L〈H〉) = mννν

Thus studying neutrino masses is, in principle, the
most sensitive probe for new physics at high scales
Weinberg
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Effective theories
The problem in effective theories is, that there are a
priori unknown pre-factors for each operator

LSM +
#

Λ
L5 +

#

Λ2
L6 + . . .

Typically, one has # = O(1), but there may be
reasons for this being wrong

• lepton number may be conserved → no Majorana
mass term

• lepton number may be approximately conserved
→ small pre-factor for L5

Therefore, we do not know the scale of new physics
responsible for neutrino masses – anywhere from keV
to the Planck scale is possible. P. Huber – VT-CNP – p. 9



Neutrino masses are different
The crucial difference between neutrinos and other
fermions is the possibility of a Majorana mass term

mLψ̄Lψ
C
R +mRψ̄Rψ

C
L

on top of the usual Dirac mass term

mDψ̄LψR

This allows for things like the seesaw mechanism
(many versions) and implies that the neutrino flavor
sector probes very different physics than the quark
sector.
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Neutrino mass determination
Finding the scale Λ of neutrino mass generation rests
crucially on knowing

• Dirac vs Majorana mass

• Absolute size of mass

All direct experimental techniques for mass
determination rely on νe, which is mostly made up of
m1 and m2. Thus, the effective mass in both
kinematic searches and 0νββ has a lower bound only
if m1,m2 > m3, which we call the inverted mass
hierarchy.
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Unitarity triangles
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What did we learn from that?
Our expectations where to find BSM physics are
driven by models – but we should not confuse the
number of models with the likelihood for discovery.
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• CKM describes all flavor effects

• SM baryogenesis difficult

• New Physics at a TeV
• does not exist or
• has a special flavor structure

and a vast number of parameter and model space
excluded.
Neutrinos are very different from quarks, therefore
precision measurements will yield very different
answers, relating to physics at scales inaccessible by
any collider. P. Huber – VT-CNP – p. 13



Mass hierarchy

Literature survey arXiv:1307.5487
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Many experiments are expected to have a result at or
above 3 σ within a decade from now.
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First hints for non-maximal θ23
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Atmospheric data do not spoil this trend but introduce some differences in the relative 

Marrone, Neutrino 2016

In normal hierarchy,
maximal mixing is
disfavored at 2σ
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CP violation
There are only very few parameters in the νSM which
can violate CP

• CKM phase – measured to be γ ≃ 70◦

• θ of the QCD vacuum – measured to be < 10−10

• Dirac phase of neutrino mixing

• Possibly: 2 Majorana phases of neutrinos

At the same time we know that the CKM phase is not
responsible for the Baryon Asymmetry of the
Universe. . .
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First hints for CP violation?
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Marrone, Neutrino 2016

Latest T2K & NOvA
combined with θ13 con-
straint from Daya Bay

Hint for δ = −π/2?
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Non-standard interactions
NSI are the workhorse for BSM physics in the
neutrino sector. They can be parameterized by terms
like this

LNSI = −2
√
2Gfǫ

fP
αβ (ν̄αγ

ρνβ)(f̄γρPf) ,

where f can be any fermion and P is the projection
onto right and left-handed components. Wolfenstein,

1978

At higher energy, this contact term has to be replaced
with a propagating exchange particle. This scale
typically is closely related to scale of neutrino mass
generation and sizable effects occur if the
scale ≪ mGUT .
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Impact on three flavors

PH, D. Vanegas, 2016

Three flavor analysis
are not safe from these
effects!

In this example, CP conserving new physics fakes CP
violation in oscillation!
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The way forward
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T2K
T2K II
NOvA
T2K(II)+NOvA
DUNE

sin2θ12=0.304

 sin2(2θ13)=0.085

 sin2θ23=0.452

δCP=-π/2

∆m2
21=7.5x10-5 eV2

∆m2
31=2.457x10-3 eV2

Clearly, we are on
the (slow) road to-
wards 3% measure-
ments of the event
rates

Translating this into
a 3% measurements
of the oscillation
probability is very
difficult

Not clear that DUNE is easier (or better) in that
respect than existing experiments, this would require
new technologies → nuPIL, nuSTORM
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LSND and MiniBooNE

P (ν̄µ → ν̄e) ≃ 0.003
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Fermilab SBN
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Signal to noise not so different from LSND. . . will a
near detector of completely different design help?
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Gallium anomaly

25% deficit of νe from radioactive sources at short
distances

Effect depends on nuclear matrix elements

This measurement was intended as a calibration – is R
a physics measurement or a calibration constant?
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Nuclear matrix elements

Recent measurements of Ga71(He3,H3)Ge71 seem to
support the Gallium anomaly Frekers et al., 2011
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The reactor anomaly
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The increase in predicted neutrino fluxes, triggered a
re-analysis of existing reactor data

And this was found by Mueller et al., 2011, 2012 –
where are all the neutrinos gone? P. Huber – VT-CNP – p. 25



Contributors to the anomaly

6% deficit of ν̄e from nuclear reactors at short
distances

• 3% increase in reactor neutrino fluxes

• decrease in neutron lifetime

• inclusion of long-lived isotopes (non-equilibrium
correction)

The effects is therefore only partially due to the fluxes,
but the error budget is clearly dominated by the fluxes.
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The 5 MeV bump

•

•

•

Seen by all three reactor experiments

Tracks reactor power

Seems independent of burn-up
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24m from a large
core (power reactor),
confirms bump, but
unclear what it says
about steriles. . .

appears to disfavor

∆m2 < 1 eV2
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Disappearance constraints
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Finding a sterile neutrino

All pieces of evidence have in common that they are
less than 5σ effects and they may be all due to the
extraordinary difficulty of performing neutrino
experiments, if not:

• N sterile neutrinos are the simplest explanation

• Tension with null results in disappearance
remains

Due to their special nature as SM gauge singlets
sterile neutrinos are strong candidates for being a
portal to a hidden sector – significant experimental
activity.
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MiniBooNE reloaded?
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. . . and that assumes all is going according to plan!P. Huber – VT-CNP – p. 31



Summary

Neutrino oscillation is solid evidence for new physics

• DUNE is a factor 2 in statistics for the global
program

• Can existing neutrino production techniques
provide systematics to make use of better
statistics?

• Current data allows large corrections to three
flavor framework

• Precision measurements have the best potential to
uncover even “newer” physics
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Summary

Sterile neutrinos - aka anomalies

Tension in global fits

• Maybe more complicated than sterile neutrino

• and/or not all data is right

• lots of nuclear physics uncertainties

Still, best evidence we currently have for more New
Physics, anywhere!

but we seem to be unable to mount a coherent
program to address those anomalies
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