A Novel Technique for Bayesian Model Selection

-- From WMAP to Planck --

Sonke Hee

Cavendish Astrophysics Group, Cambridge Kavli Institute for Cosmology Cambridge Churchill College, Cambridge

Background Introduction

The Problem

The Solution

Physics – finally!

Thanks!

Where is this research taking place?

Bayesian Statistics

Dark Energy Physics

Computational Cosmology

Intr	oduction	Bac	kground	The Prob	lem	The So	lution	Physics -	– finally!	\bigcirc	Thanks!
	Baye	esian	<u>Sta</u>	<u>tistics</u>							
\mathcal{B}_{ij}	$= \ln \theta$	$ig(rac{Pr(arsigma)}{Pr(arsigma)}$	$rac{\mathcal{M}_j \mathcal{D}]}{\mathcal{M}_i \mathcal{D}]}$	$\frac{1}{2}) = \ln(1)$	$\left(\frac{\mathcal{Z}_i}{\mathcal{Z}_i}\right)$		Bay	yesian St	atistics	5	
Ba	ayes fac	tor	Interp	oretation	5						
0.	$0 \leq \mathcal{B}_{ij}$	< 1.0	Not si	gnificant							
1.	$0 \leq \mathcal{B}_{ij}$	< 2.5	Slight			Dark Phy	Energy vsics	/	Com	puta	itional logy
2.	$5 \leq \mathcal{B}_{ij}$	< 5.0	Strong	3		••••	5105			51110	1059
5.	$0 \leq \mathcal{B}_{ij}$		Decisi	ve							
2. 5.	$5 \leq \mathcal{B}_{ij}$ $0 \leq \mathcal{B}_{ij}$	< 5.0	Strong Decisi	g ve		Physics			Cosm		logy

The Problem

Physics – finally!

Thanks!

Dark Energy Physics

LCDM? Quintessence? Phantom?

Introduction

Bayesian Statistics

Dark Energy Physics Computational Cosmology

The Problem we are Investigating

J.A. Vázquez, M. Bridges, M.P. Hobson and A.N. Lasenby (2012) "Reconstruction of the dark energy equation of state". JCAP, 09, 20. (arxiv 1205.0847)

Model (number of nodes)	Bayes Factor compared to LCDM
wCDM (1)	-2.19 +/- 0.35
tCDM (2)	-2.34 +/- 0.35
1CDM (3)	-1.27 +/- 0.35
2CDM (4)	-0.81 +/- 0.35
3CDM (5)	-0.95 +/- 0.35

Thanks!

The Problem to Solve

Parameter	Prior Range	Prior Type			
$\Omega_b h^2$	[0.019, 0.025]	uniform			
$\Omega_c h^2$	[0.095, 0.145]	uniform			
1000 _{MC}	[1.03, 1.05]	uniform			
τ	[0.01, 0.4]	uniform			
n _s	[0.885, 1.04]	uniform			
$\ln(10^{10}A_s)$	[2.5, 3.7]	uniform			
A ^{PS} ₁₀₀	[0, 360]	uniform			
A ^{PS} ₁₄₃	[0, 270]	uniform			
A ^{PS} ₂₁₇	[0, 450]	uniform			
A ^{CIB} ₁₄₃	[0, 20]	uniform			
A ^{CIB} ₂₁₇	[0, 80]	uniform			
$A_{143}^{\iota SZ}$	[0, 10]	uniform			
r ^{PS} 143×217	[0, 1]	uniform			
r ^{CIB} 143×217	[0, 1]	uniform			
γ^{CIB}	[-2, 2]	uniform			
C100	[0.98, 1.02]	uniform			
C217	[0.95, 1.05]	uniform			
$\xi^{iSZ-CIB}$	[0, 1]	uniform			
A^{kSZ}	[0, 10]	uniform			
β_1^1	[-20, 20]	uniform			
$w(z_1)$	[-2, -0.01]	uniform			
$w(z_2)$	[-2, -0.01]	uniform			
w(z3)	[-2, -0.01]	uniform			
$w(z_4)$	[-2, -0.01]	uniform			
w(z5)	[-2, -0.01]	uniform			
Z2	[0.01, 2.0]	sorted-uniform			
Z3	[0.01, 2.0]	sorted-uniform			
Z4	[0.01, 2.0]	sorted-uniform			
n	$[\Lambda, w, t, 1, 2, 3]$	uniform			

The Solution

Physics – finally!

Thanks!

'Vanilla' Method

- Calculate Bayes factors with Evidences

The Solution

Physics – finally!

Thanks!

Our Solution – Testing

The Problem

The Solution

Physics – finally!

Thanks!

Our Solution – Works!

The Solution

Physics – finally!

Thanks!

Our Solution – Works!

The Problem

The Solution

Physics – finally!

Thanks!

So let's do some Physics – finally!

The Problem

The Solution

Physics – finally!

Thanks!

So let's do some Physics – finally!

The Problem

The Solution

So let's do some Physics – finally!

The Solution

Physics – finally!

Thanks!

Final Conclusions

WMAP era Datasets

Planck 2013 era Datasets

<u>Thanks</u>

To my supervisors!

To Will! (POLYCHORD)

To Rich and Do Young!

Cambridge University, and STFC for funding! S. Hee, W. Handley, M. Hobson and A. Lasenby (2015) "Bayesian model selection without evidences: application to the dark energy equation-of-state". Arxiv: 1506.09024, submitted to MNRAS.

