Testing Isotropy and Statistics of the CMB with Planck

Andrei Frolov on behalf of Planck Collaboration

Rencontres du Vietnam:
Cosmology - 50 years after CMB discovery

International Centre for Interdisciplinary Science Education
Quy Nhon, Vietnam, 21 August 2015
1 Instrument and Mission Overview
2 Variance Asymmetry
3 Peak Statistics & Cold Spot
4 Stacking & Polarization
5 Conclusions
Planck 2015: What’s New?

- **More data:** 48/29 months of LFI/HFI observations, enabling further checks
- **Improved data processing:** systematics removal, calibration, beam reconstruction
- **Improved foreground model:** larger sky-fraction used for analysis
- **More robust to systematics:** based on half-mission cross power spectra
- The 2015 analysis includes polarization
More data: 48/29 months of LFI/HFI observations, enabling further checks

Improved data processing: systematics removal, calibration, beam reconstruction

Improved foreground model: larger sky-fraction used for analysis

More robust to systematics: based on half-mission cross power spectra

The 2015 analysis includes polarization
CMB Intensity Map
- Smoothed to 1 degree resolution
- High-pass filtered with $l=20-40$ cosine filter
- Galactic plane replaced with constrained Gaussian realization
Red curve is the prediction based on the best fit TT in base ΛCDM.
Red curve is the prediction based on the best fit TT in base ΛCDM.
$\ell_k \equiv k D_{\text{rec}}$

- \mathcal{P}_R samples
- \mathcal{P}_t samples
- mean \mathcal{P}_R
- mean \mathcal{P}_t
- fiducial model \mathcal{P}_R
- fiducial model \mathcal{P}_t

free r; TT + low-z

$10^{10} \mathcal{P}_{R,t}$

$k [\text{Mpc}^{-1}]$
Primordial Spectrum Reconstruction

$$\ell_k \equiv kD_{\text{rec}}$$

$$(\ell_k)^{-1} = 10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 10^0$$

$$(k)^{-1} = 10^1, 10^2, 10^3, 10^4$$

Fixed $r_{0.05} = 0.1$; TT, TE, EE + low-z

P_R samples P_t samples

Mean P_R P_t

Fiducial model P_R P_t

$10^{10} P_{R,t}$
Running Spectral Index is Not a Good Fit!

- free r samples
- $r_{0.05} = 0.1$ mean
- $r_{0.05} = 0.01$ mean
- $\frac{dn_s}{d\ln k}$ best fit
- $\tau = 0.04$

$\Delta D_\ell(\mu K^2)$ vs ℓ
mean-subtracted and inverse-variance-weighted local-variance map for 8° discs in Commander component-separated CMB map
Local Variance Dipole Modulation

variance dipole amplitude 0.052 ± 0.016, direction $(l, b) = (210^\circ, -26^\circ)$
(no high-pass filter applied)
Going after localized anomalies...
Let’s look at peaks!
Estimating observable from a noisy data:

$$\overline{o(\vec{x})} = h(\vec{x}) \ast s(\vec{x}) + \epsilon(\vec{x}) \quad \Rightarrow \quad \hat{s}(\vec{x}) = g(\vec{x}) \ast \overline{o(\vec{x})}$$

observable transfer signal noise

In Fourier domain, optimal Wiener filter is:

$$G = \frac{\overline{H} \cdot S}{|H|^2 \cdot S + N} \sim \frac{\overline{H}}{N} \cdot S$$

Take a shortcut - whiten data using isotropic CMB+noise model!

$$G \sim C_\ell^{-\frac{1}{2}} \cdot S$$

Whiten and filter, search for peaks!
CMB Data Analysis Pipeline

- SMICA
- Whiten
- Mask
- Filter
- Find Peaks

Planck 2014 release [SSG84 filter at 240′ FWHM]
Planck 2014 release [SSG84 filter at 240′ FWHM]
CMB Data Analysis Pipeline

- SMICA
- Whiten
- Mask
- Filter
- Find Peaks

Planck 2014 release [SSG84 filter at 240' FWHM]
Planck 2014 release [SSG84 filter at 240′ FWHM]
Planck 2014 release [SSG84 filter at 240' FWHM]
Testing CMB Peak Statistics

- Peak CDF
- Gaussian CDF
- Deviation
- Simulations

SSG84 filter at 240′ FWHM

957 peaks

hottest at \((-0.00 + 3.59)\sigma\)
coldest at \((-0.00 - 4.26)\sigma\)
Bond and Efstathiou (1987)

\[
\frac{n_{\text{max}} + n_{\text{min}}}{n_{\text{pk}}} \left(\frac{x}{\sigma} > \nu \right) = \sqrt{\frac{3}{2\pi}} \gamma^2 \nu \exp\left(-\frac{\nu^2}{2}\right) + \frac{1}{2} \text{erfc}\left[\frac{\nu}{\sqrt{2-\frac{4}{3}\gamma^2}}\right]
\]

SSG84 filter at 240′ FWHM

957 peaks

hottest at (−0.00 + 3.59)σ

coldest at (−0.00 − 4.26)σ
Bond and Efstathiou (1987)

\[
\frac{n_{\text{max}} + n_{\text{min}}}{n_{\text{pk}}} \left(\frac{x}{\sigma} > \nu \right) = \sqrt{\frac{3}{2\pi}} \gamma^2 \nu \exp \left(-\frac{\nu^2}{2} \right) + \frac{1}{2} \text{erfc} \left[\frac{\nu}{\sqrt{2 - \frac{4}{3} \gamma^2}} \right]
\]

957 peaks

- hottest at \((-0.00 + 3.59)\sigma\)
- coldest at \((-0.00 - 4.26)\sigma\)
Testing CMB Peak Statistics

- Peak CDF
- Gaussian CDF
- Deviation
- Simulations

Kolmogorov deviation from FFP8 peak CDF

957 peaks

hottest at \((-0.00 + 3.59)\sigma\)
coldest at \((-0.00 - 4.26)\sigma\)

Gaussian peak fit, \(\gamma = 0.82\)

SSG84 filter at 240' FWHM
Kolmogorov deviation from FFP8 peak CDF

- **Gaussian peak fit,** $\gamma = 0.82$
- **SSG84 filter at 240’ FWHM**

- **957 peaks**
 - hottest at $(-0.00 + 3.59)\sigma$
 - coldest at $(-0.00 - 4.26)\sigma$

- **957 peaks**
SSG84 Filter Sweep

Planck 2014 release [SSG84 filter at 120' FWHM]
Planck 2014 release [SSG84 filter at 240° FWHM]
SSG84 Filter Sweep

Planck 2014 release [SSG84 filter at 400' FWHM]
Planck 2014 release [SSG84 filter at 800′ FWHM]
Planck 2014 release [SSG84 filter at 1200′ FWHM]
Significance evaluated by counting simulations which exceed observed value –
For full details see Isotropy and Statistics paper.
Significance of Cold Spot

- Whitened Savitzky-Golay
- Mexican Hat Wavelet

Filter kernel size [degrees FWHM]

PTE in Gaussian field

Effective confidence level [ν]

Significance evaluated by counting simulations which exceed observed value –

For full details see Isotropy and Statistics paper.
Cold Spot is Fairly Cold!

Gaussian peak fit, $\gamma = 0.83$

SSG84 filter at 800′ FWHM

64 peaks

hottest at $+2.68\sigma$

coldest at -4.12σ
Asymmetry in Peak Distributions

Threshold

Kolmogorov-Smirnov deviation

peak distributions are also different in two hemispheres!
(pre-whitened GAUSS filter at 40′ full-width half-max)
How does a neighbourhood of a peak look like?
Let’s do some stacking!
Three key elements:

A What to stack? (cosmic field u)
B Where to stack? (selection of patches, e.g., peaks)
C How to stack? (patch orientations)

“where” and “how” give constrained parameter(s) q;

$$
\begin{array}{ll}
\text{What} & \text{WMAP & Planck 2013} \\
T, Q, U, Q_r, U_r & T, Q, U, Q_r, U_r, E, B, Q_T, U_T, \zeta_{dv}, \ldots \\
\text{Where} & \text{Planck 2014} \\
T \text{ peaks} & T, E, B, Q^2 + U^2, Q_T^2 + U_T^2, \zeta_{dv} \ldots \text{ peaks} \\
\text{How} & \text{oriented and unoriented} \\
\text{unoriented} & \\
\end{array}
$$

For Gaussian fields,

$$
\langle u | q; \text{peak, orientation} \rangle = \langle u q^\dagger \rangle \langle q q^\dagger \rangle^{-1} \langle q | \text{peak, orientation} \rangle.
$$
Planck 2014: Stacking Temperature

T on hot spots

24645 patches on T maxima, random orientation, threshold $\nu=0$

resolution: FWHM 15 arcmin
Peaks are selected above a threshold $|T_{\text{peak}}| > \nu \sqrt{\langle T^2 \rangle}$ ($\nu = 0$ here).

Full statistics in Isotropy and Statistics paper!

T on cold spots

24582 patches on T minima, random orientation, threshold $\nu=0$

Full statistics in Isotropy and Statistics paper!
Planck 2014: Stacking Polarization

Q_r on hot spots

33214 patches on T maxima, random orientation, threshold $\nu=0$

Q_r on cold spots

33126 patches on T minima, random orientation, threshold $\nu=0$

resolution: FWHM 15 arcmin

Peaks are selected above a threshold $|T_{\text{peak}}| > \nu \sqrt{\langle T^2 \rangle}$ ($\nu = 0$ here).

Full statistics in Isotropy and Statistics paper!
flat-sky polar coor. (ϖ, ϕ):

$$\varpi = 2 \sin \frac{\theta}{2}$$

$$Q_r = -Q \cos 2\phi - U \sin 2\phi$$

$$U_r = -U \cos 2\phi + Q \sin 2\phi$$
Oriented Stacking of Polarization

E on oriented T peaks
33216 patches on T maxima, oriented, threshold $\nu=0$

Q on oriented $Q_T^2 + U_T^2$ peaks
58099 patches on P_T maxima, oriented, threshold $\nu=0$

Planck 2014 (peak threshold $\nu = 0$; resolution FWHM 15 arcmin)
Stacking on Polarization Peaks

Q_r on unoriented E peaks

99529 patches on E maxima, random orientation, threshold $\nu=0$

Q on oriented $Q^2 + U^2$ peaks

196910 patches on P maxima, oriented, threshold $\nu=0$

Planck 2014 (peak threshold $\nu = 0$; resolution FWHM 15 arcmin)
Stacking Polarized Dust

Planck 2014 Component Separated Commander Dust Map

Dust Component, $T < 25\mu K$

43 patches on P maxima, oriented, threshold $\nu = 1, I \leq 25\mu K$

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. U vanishes in the centre).

Patch size: $\varpi \leq 7^\circ$; threshold $\nu = 1$

T map FWHM 2°; Q, U maps FWHM 15 arcmin.

CMB Component

33536 patches on P maxima, oriented, threshold $\nu = 1$
Planck 2014 Component Separated Commander Dust Map

Dust Component, $T < 35\mu K$

274 patches on P maxima, oriented, threshold $\nu = 1$, $I \leq 35\mu K$

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. U vanishes in the centre).

Patch size: $\varpi \leq 7^\circ$; threshold $\nu = 1$

T map FWHM 2°; Q, U maps FWHM 15 arcmin.
Stacking Polarized Dust

Planck 2014 Component Separated Commander Dust Map

Dust Component, $T < 45 \mu K$

809 patches on P maxima, oriented, threshold $\nu = 1$, $I \leq 45 \mu K$

CMB Component

33536 patches on P maxima, oriented, threshold $\nu = 1$

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. U vanishes in the centre).

Patch size: $\pm 7^\circ$; threshold $\nu = 1$

T map FWHM 2°; Q, U maps FWHM 15 arcmin.
Stacking Polarized Dust

Planck 2014 Component Separated Commander Dust Map

Dust Component, $T < 55\mu K$

1855 patches on P maxima, oriented, threshold $\nu = 1$, $I \leq 55\mu K$

CMB Component

33536 patches on P maxima, oriented, threshold $\nu = 1$

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. U vanishes in the centre).

Patch size: $\omega \leq 7^\circ$; threshold $\nu = 1$

T map FWHM 2°; Q, U maps FWHM 15 arcmin.
Planck 2014 Component Separated Commander Dust Map

Dust Component, \(T < 95 \mu K \)

6673 patches on \(P \) maxima, oriented, threshold \(\nu = 1, I \leq 95 \mu K \)

CMB Component

33536 patches on \(P \) maxima, oriented, threshold \(\nu = 1 \)

\(Q \) stacked on \(Q^2 + U^2 \) oriented peaks (oriented s.t. \(U \) vanishes in the centre).

Patch size: \(\varpi \leq 7^\circ \); threshold \(\nu = 1 \)

\(T \) map FWHM 2°; \(Q, U \) maps FWHM 15 arcmin.
Planck 2014 Component Separated Commander Dust Map

Dust Component, $T < 115\mu K$

8531 patches on P maxima, oriented, threshold $\nu = 1$, $I \leq 115\mu K$

Q stacked on $Q^2 + U^2$ oriented peaks (oriented s.t. U vanishes in the centre).

Patch size: $\omega \leq 7^\circ$; threshold $\nu = 1$

T map FWHM 2$^\circ$; Q, U maps FWHM 15 arcmin.
Conclusions

- A lot more and better processed and analyzed data.
- As in 2013, base ΛCDM continues to be a good fit to the Planck data, including polarization.
- Polarization has a degeneracy lifting capability often comparable to BAO.
- No convincing evidence for any simple extensions. Scalar fluctuations consistent with pure adiabatic modes with a featureless tilted spectrum.
- 2015 statistics: mostly Gaussian, but with similar anomalies than 2013. Many new methods explored, including of novel oriented stacking and peak statistics methods.
- Stacking and peak statistics give a complimentary approach for probing hemispherical asymmetry and component separation tests.
2015 papers and data are released!

+ more to come...
The End.
The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.
Generalized Savitzky-Golay filter kernel:

\[F_{n,k}(x) = \left(\sum_{i=0}^{n/2} a_i x^{2i} \right) (1 - x^2)^k \]

Orthogonal to polynomials up to order \(n \):

\[
\int_0^1 x F_{n,k}(x) \, dx = 1, \quad \int_0^1 x^{i+1} F_{n,k}(x) \, dx = 0
\]

Savitzky and Golay (1964)

locate peaks in noisy spectra – topcite in Analytical Chemistry!
Filter Kernels in Harmonic Space

real space [compact support] harmonic space [low-pass filter]
First derivative vanishes on the peak. Need to use the 2nd derivatives.

Intuitively (flat-sky limit):
\[Q_T \equiv \nabla^{-2}(\partial_y^2 - \partial_x^2)T, \quad U_T \equiv -2\nabla^{-2}(\partial_x \partial_y)T \]

Slightly non-intuitive (on the sphere):
\[Q_T(n) \pm iU_T(n) \equiv \sum_{l,m} \left[\int T(n') Y^*_l m(n') \, d^2n' \right] \pm 2 Y_{lm}(n) \]

Orient the patch such that \(U_T \) vanishes in the centre.
\[\langle u|q; \text{peak, orientation}\rangle(\psi, \phi) \text{ decomposes to } \cos m\phi, \quad m = 0, 2, 4. \]