

Non-Gaussianity in Planck data

Benjamin Racine

On behalf of the Planck collaboration

August 21st, 2015

Rencontres du Vietnam

UiO Institute of Theoretical Astrophysics The Faculty of Mathematics and Natural Sciences

Outline

1) Introduction

- a) Inflation and CMB
- b) Non Gaussianity and bispectrum

2) Planck 2015

- a) Systematics, validations, etc.
- b) Results

1.a. Inflation and CMB

'Simplest" Inflation

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R + \frac{1}{2}g^{\mu\nu}\delta_{\mu}\phi\delta_{\nu}\phi - V(\phi) \right]$$

- Single scalar field
- Slow roll
- Bunch Davies Vacuum
- Canonical Kinetic Term

Source of nearly Gaussian perturbations $\delta \Phi(x) \Rightarrow$ All statistical information is in power spectrum $<\delta \Phi(k) \ \delta \Phi(k) >$

Inflation and CMB

 ∞ $\rightarrow T(\Omega) = \sum \sum a_{\ell m} Y_{\ell m}(\Omega)$ $\ell = 2 m = -\ell$ **Transfer functions** Primordial gravitational (Baryon oscillations) potential $a_{\ell m} \propto (-i)^{\ell} \int \frac{d^3 k}{(2\pi)^3} \Delta_{\ell}(k) \Phi(k) Y_{\ell m}(\Omega)$ Geometrical part: from k space to ℓ space

1.b. Non Gaussianity and Bispectum

Gaussianity

Here we show temperature, but same idea for E polarization

6

Spectrum, bispectrum

"Simplest" Inflation

Slow Roll inflation : $f_{NL} \approx 10^{-2}$

• Canonical Kinetic Term

Equilateral: DBI, k-inflation $f_{NL} = O(10-100)$ k_3 k_1 k_2

+ Isocurvature modes

Cf talks by Silverstein, Tolley, Vernizzi

Temperature bispectrum

$$B_{\ell_1\ell_2\ell_3} = f_{\ell_1\ell_2\ell_3}^{m_1m_2m_3} \langle a_{\ell_1m_1}a_{\ell_2m_2}a_{\ell_3m_3} \rangle$$

Ortho. = Equil. $-2 \times Flat$.

2. Planck 2015

2.a. Systematics, validation, etc.

Late time - non primor "Astrophysical" systematics

- Galaxy

 (Component separation + mask seems to clean most of it)
- Diffuse point sources (Flat bispectrum, detected, no impact on PNG)
- ISW-lensing (Biases the measurement, we correct for it using model by Lewis et al 2011)
- Infrared Background
 - (Prescription by Lacasa et al 2014, not detected, no impact on PNG)
- new
- **Cosmic Rays**
 - (Based on simulations, effect is negligible)
- 2nd order effects at recombination
 - (TBD, but expected below Planck sensitivity)^{cf. F. Vernizzi's talk}

Other checks

- Agreement between different estimators
- Validation on simple simulations with input NG
- Validation on realistic Planck Simulations
- Independence on the component separation method
- Independence on the sky coverage
- Stability in harmonic domain (varying $\ell_{\rm max}$)

2.a. Results

f_{NL} analysis is vaslty compatible with a nearly Gaussian universe, i.e. simplest models of inflation.

Planck Smoothed Bispectrum

Smoothed Bispectrum

Results obtained using the binned bispectrum

Conclusion

- Inflation is needed as an early universe *add-on* to Big-Bang theory.
- Many models produce non-Gaussian signatures in the CMB.
- Planck 2015 results are more robust, and include part of the E polarization signal: $f_{\rm NL}^{\rm local} = 0.8 \pm 5.0$, $f_{\rm NL}^{\rm equil} = -4 \pm 43$, $f_{\rm NL}^{\rm ortho} = -26 \pm 21$
- Many more shapes, hints to be investigated (oscillations).
- Data are compatible with the simplest models of inflation.
- Future:
 - Planck full polarization.

- Cf O. Doré talk
- Large-Scale Structures (SKA, Euclid, SPHEREx, ...).
- CMB distortions ?

Cảm ơn !

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.