The Sunyaev-Zel'dovich Effect and Large-Scale Structure

Colin Hill

Columbia University Junior Fellow, Simons Society of Fellows

w/ D. Spergel, N. Battaglia, N. Murray, J. Greco, B. Sherwin, K. Smith, J. Chluba, S. Ferraro, E. Schaan
 1312.4525, 1409.6747, 1411.8004, 1412.5593, 1504.05598, 1507.01583

Rencontres du Vietnam, Quy Nhon 21 August 2015

Outline

- Thermal SZ (tSZ) Effect
- Probing LSS and Gastrophysics
- tSZ x Gravitational Lensing
- tSZ Statistics: Power Spectrum and Beyond
- tSZ Stacking: the Y-M Relation
- Future: the tSZ Monopole

Thermal SZ Effect

Change in temperature of CMB photons due to inverse Compton scattering off hot electrons, most of which are in the intracluster medium (ICM) of galaxy groups/clusters

temperature

fluctuation

Thermal SZ Effect

Unique spectral signature

Carlstrom+ (2002)

Thermal SZ Effect

Colin Hill

Columbia

simulation

Colin Hill Probing Large-Scale Structure^{Columbia} tSZ effect in the context of LSS — strongly dominated by halos

Colin Hill Probing Large-Scale Structure^{Columbia} tSZ effect in the context of LSS — strongly dominated by halos

from N. Battaglia hydro sim.

Colin Hill Probing Large-Scale Structure^{Columbia} dependence on intracluster medium "gastrophysics"

from N. Battaglia hydro sim.

AGN Feedback (+cooling+SF+...)

Colin Hill Probing Large-Scale Structure^{Columbia} dependence on intracluster medium "gastrophysics"

from N. Battaglia hydro sim.

Colin Hill Probing Large-Scale Structure^{Columbia}

dependence on intracluster medium "gastrophysics"

McCarthy+ (2014)

tSZ x Lensing

tSZ x CMB Lensing

Probe relationship of hot, ionized gas and matter density

Analysis using Planck 2013 data

ILC Compton-y Map

Colin Hill

Columbia

Galactic South

JCH & Spergel (2014)

JCH & Spergel (2014)

Battaglia, JCH, & Murray (2014)

tSZ x CFHTLenS

"missing baryons"?

van Waerbeke, Hinshaw, Murray (2014)

tSZ x CFHTLenS

Colin Hill Columbia

Colin Hill

Columbia

- It is extremely difficult to probe "missing baryons" with tSZ measurements, including tSZ x lensing.
 (instead: kSZ — see Blake Sherwin's talk + Planck XXXVII (2015))
- However, these measurements are a powerful probe of the ICM electron pressure profile, i.e., of gastrophysical feedback models.

Planck tSZ x S3 CMB lensing, S4 galaxy lensing

P ₀ (pressure profile amplitude)	+/- 22%
β (pressure profile outer slope)	+/- 4%
α_z (z-dependence of amplitude)	+/- 13%

Battaglia, JCH, & Murray (2014)

tSZ Statistics: Power Spectrum and Beyond

tSZ Power Spectrum

Colin Hill

Columbia

Planck 2015 Compton-y map

tSZ Power Spectrum

Colin Hill

Columbia

tSZ Skewness

Colin Hill

Columbia

Bonus: different tSZ statistics depend differently on cosmology (σ_8) and astrophysics (ICM pressure profile)

can break degeneracies (e.g., combine tSZ power spectrum amplitude with skewness)

Wilson, Sherwin, JCH+ (2012); JCH & Sherwin (2013); Crawford+ (2014)

tSZ PDF

- Optimal extension of this idea: measure all the moments (the PDF)
- Probe of non-gaussian structure:
 - For a gaussian field, power spectrum already specifies the PDF

$$\sigma^2 = \sum_{0}^{\infty} \frac{2\ell + 1}{4\pi} C_\ell$$

- Simple observable: histogram of pixel temperature values
- Use information from all clusters in map, including SNR<5
- Optimal cosmological tSZ statistic (very sensitive to σ_8)
- Route to breaking degeneracies between cluster gas physics and cosmological parameters

tSZ PDF

Colin Hill Columbia

tSZ PDF

 $\sigma_8 = 0.793 \pm 0.018 \,(\text{stat.}) \pm 0.017 \,(\text{ICM syst.}) \pm 0.006 \,(\text{IR syst.})$

~2x smaller than stat. error from tSZ skewness alone (Wilson+12)

data unable to simultaneously constrain ICM (via P_0) and σ_8 , but ACTPol/AdvACT will

Constraints

Colin Hill

Columbia

Planck y-map PDF

 $\sigma_8 = 0.77 \pm 0.02$ (68% C.L.) (fixed gas physics model)

Colin Hill

Columbia

major challenge: modeling foreground propagation into y-map Planck+ XXII (2015)

tSZ Stacking: the Y-M Relation

tSZ Stacking Planck x SDSS Locally Brightest Galaxies

Planck+ XI (2013)

tSZ Stacking Planck x SDSS Locally Brightest Galaxies

Planck+ (2013), LeBrun, McCarthy, Melin (2015) 30

Colin Hill Columbia Planck x SDSS Locally Brightest Galaxies Reconsidered

tSZ Stacking Quasars: Feedback Signal?

Ruan+ (2015) + y-map of JCH & Spergel (2014) 32

tSZ Stacking Quasars: Feedback Signal?

A major issue: contamination from the two-halo term?

Ruan+ (2015) + y-map of JCH & Spergel (2014) 33

The tSZ Monopole

see also Joe Silk's talk

Columbia Columbia Columbia COBE-FIRAS CMB spectrum is blackbody to 50 ppm precision $|\langle y \rangle| < 1.5 \times 10^{-5}$ at 95% CL

Fixsen+ (1996); Fixsen (2009)

wavenumber

Colin Hill

<y> and PIXIE

 $>1000\sigma$ detection of mean tSZ signal of the universe

<y> and PIXIE

30o detection of relativistic effects in mean tSZ signal

<y> and PIXIE

sub-percent constraints on gastrophysical models

Outlook

Colin Hill

Columbia

- tSZ x CMB lensing and tSZ x CFHTLenS measurements are fit by a consistent gastrophysical model; both prefer σ₈ values somewhat lower than Planck CMB.
- Current measurements probe gas pressure profile over wide ranges in mass/redshift, but not "missing baryons".
- tSZ statistics beyond the power spectrum (e.g., PDF) show great promise for cosmological constraints.
- Self-similarity (or not) of Y-M remains an open question.
- *PIXIE* measurement of tSZ monopole will yield subpercent constraints on gastrophysics.

Extra Slides

Colin Hill Probing Large-Scale Structure^{Columbia} dependence on intracluster medium "gastrophysics"

from N. Battaglia hydro sim.

Colin Hill Probing Large-Scale Structure^{Columbia} dependence on intracluster medium "gastrophysics"

from N. Battaglia hydro sim.

tSZ x Lensing: Takeaway

Colin Hill

Columbia

• It is extremely difficult to probe "missing baryons" with tSZ measurements, including tSZ x lensing.

Battaglia, JCH, & Murray (2014)

Wiener-filter ACT Equatorial 148 GHz map — clear non-gaussian tail
 No similar feature seen in identically-processed 218 GHz map

Model

Colin Hill Columbia

- Thermal SZ PDF: how much sky area is subtended by tSZ (Compton-y) values in a given range?
- Simple for a spherical cluster: area between two circles

• Then add up such areas for all clusters:

$$\langle P_b
angle_{
m noiseless} = \int dz rac{d^2 V}{dz d\Omega} \int dM rac{dn}{dM} \pi \left(heta^2(y_{min}, M, z) - heta^2(y_{max}, M, z)
ight)$$

area of annulus

volume element mass function

Model

- Thermal SZ PDF: how much sky area is subtended by tSZ (Compton-y) values in a given range?
- Simple for a spherical cluster: area between two circles

Complications:

- non-tSZ contributions in CMB map
- inhomogeneous/correlated noise
- cluster overlaps along line-of-sight

• Then add up such areas for all clusters:

$$\langle P_b
angle_{
m noiseless} \; = \; \int dz rac{d^2 V}{dz d\Omega} \int dM rac{dn}{dM} \pi \left(heta^2(y_{min}, M, z) - heta^2(y_{max}, M, z)
ight)$$

volume element mass function

area of annulus

Model + Noise

Colin Hill

Columbia

Observable tSZ PDF:

- Convolve with noise PDF (measured from splits of data)
- Convolve with other components (CMB, foregrounds)
- Account for contributions from zero-tSZ pixels (pure noise)
- Fiducial model: WMAP9 cosmology + Tinker mass function + Battaglia pressure profile
- Noise PDF, Wiener filter, and beam specified to match ACT Equ 148 GHz data analysis

Colin Hill

Columbia

 P_0 = overall normalized amplitude of $P_e(M,z)$ relation

Contributions

Colin Hill

Columbia

How does the 148 GHz negative tail change as we mask individually detected clusters as a function of their SNR?

Analysis

- Focus on σ_8 (most sensitive parameter)
- Fit only T<0 148 GHz PDF (avoids nearly all non-tSZ signals)
- Marginalize over non-tSZ foreground contribution
- Marginalize over parameterized ICM gas physics via P₀
- Correct for IR sources "filling in" tSZ decrements at 148 GHz
- Monte Carlo to compute covariance matrix (highly correlated) and validate pipeline