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Figure 4: Discovery data: Hubble diagram of SNe Ia measured by the Supernova
Cosmology Project and the High-z Supernova Team. Bottom panel shows residu-
als in distance modulus relative to an open universe with Ω0 = ΩM = 0.3. Figure
adapted from Perlmutter & Schmidt (2003), Riess (2000), based on Perlmutter
et al. (1999), Riess et al. (1998).

Subsequent supernova observations have reinforced the original results, and new
evidence has accrued from other observational probes. In this section, we review
these developments and discuss the current status of the evidence for cosmic
acceleration and what we know about dark energy. In §7, we address the probes
of cosmic acceleration in more detail, and we discuss future experiments in §8.

4.1 Cosmic microwave background and large-scale structure

An early and important confirmation of accelerated expansion was the indepen-
dent evidence for dark energy from measurements of CMB anisotropy (Jaffe et al.
2001, Pryke et al. 2002) and of large-scale structure (LSS). The CMB constrains
the amplitude of the primordial fluctuations that give rise to the observed struc-
ture as well as the distance to the last-scattering surface, r(z ≃ 1100). In order
to allow sufficient growth of the primordial perturbations and not disrupt the for-
mation of large-scale structure, dark energy must come to dominate the Universe
only very recently (see §2.3), implying that its energy density must evolve with
redshift more slowly than matter. This occurs if it has negative pressure, w < 0,
cf. Eq. (5). Likewise, the presence of a component with large negative pressure
that accounts for three-quarters of the critical density affects the distance to the
last-scattering surface.
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fers [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] from that
in GR. Theories of LSS in these modified gravity models
are still in their infancy. However, perturbative calcula-
tions at large scales have shown that it is promising to
connect predictions in these theories with observations
of LSS. Most studies have focused on probes of a single
growth factor with one or a few observables. In this paper
we will consider a variety of LSS observables that can be
measured with high precision with current or planned
surveys. Our emphasis will be on model-independent
constraints of MG enabled by combining different ob-
servables.

Carrying out robust tests of MG in practice is chal-
lenging as in the absence of a fundamental theory, the
modifications to gravity are often parameterized by free
functions, to be fine tuned and fixed by observations.
Given the parameter space available to both DE and
MG theories, it is unclear how the two classes of theories
can be distinguished. Kunz and Sapone [19] presented
a rather pessimistic example. They found that one can
tune a clustered dark energy model to reproduce obser-
vations of gravitational lensing and matter fluctuations
in the DGP model. It is not clear if this conclusion ap-
plies to all modified gravity models and if adding more
LSS observables helps to break this severe degeneracy.

In this paper, we first discuss ways of parameterizing
modified gravity models and dark energy models. §II
presents the definitions and evolution equations for per-
turbations in the metric and the energy momentum ten-
sor. We then classify independent LSS observables based
on the perturbations that are probed by them. §III is
devoted to the use of observational probes of LSS for
testing MG. We consider the four fundamental pertur-
bation variables and the observations that can be used
to probe them. The additional information available in
the quasilinear regime is discussed in the Appendix. In
§IV we consider the question of distinguishing MG from
DE scenarios. The specific question we want to answer
is: given a set of LSS observations, can a general MG
model be mimicked by a DE model? If not, what LSS
observables are required to break the degeneracy? We
conclude in §V.

II. PERTURBATION FORMALISM

By definition, the dark sector (dark matter and dark
energy) can only be inferred from their gravitational con-
sequence. In general relativity, gravity is determined
by the total stress-energy tensor of all matter and en-
ergy (Gµν = 8πG Tµν). Thus we can treat dark mat-
ter and dark energy as a single entity, without loss of
physical generality [20, 21, 22]. This entity has total
mean matter density ρ̄GR and equation of state parame-
ter w = pGR/ρ̄GR. However, when discussing perturba-
tions in this entity, we may separate it into a matter com-
ponent (dissipationless particles which can be described
as a pressure-less fluid free of anisotropic stress) and a

dark energy component. Throughout this paper, when
we refer to “smooth” or “clustered” dark energy, we re-
fer to this dark energy subset of the overall dark sector.

We may consider the Hubble parameter H(z) to be
fixed by observations. In a dark energy model, ρ̄GR is
given by the Friedman equation of GR: ρ̄GR = 3H2/8πG.
The equation of state parameter is w = −1 − 2Ḣ/3H2.

The corresponding modified gravity model has mat-
ter density ρ̄MG to be determined from its Friedman-like
equation. We will consider MG models dominated by
dark matter and baryons at late times and denote fluid
variables such as the density with subscript MG.

A. Metric and fluid perturbations

With the smooth variables fixed, we will consider per-
turbations as a way of testing the models. In the Newto-
nian gauge, scalar perturbations to the metric are fully
specified by two scalar potentials ψ and φ:

ds2 = −(1 + 2ψ) dt2 + (1 − 2φ) a2(t) dx⃗2 (1)

where a(t) is the expansion scale factor. This form for
the perturbed metric is fully general for any metric the-
ory of gravity, aside from having excluded vector and
tensor perturbations (see [24] and references therein for
justifications). Note that ψ corresponds to the Newto-
nian potential for the acceleration of particles, and that
in General Relativity φ = ψ in the absence of anisotropic
stresses.

A metric theory of gravity relates the two potentials
above to the perturbed energy-momentum tensor. We in-
troduce variables to characterize the density and velocity
perturbations for a fluid, which we will use to describe
matter and dark energy (we will also consider pressure
and anisotropic stress below). The density fluctuation δ
is given by

δ(x⃗, t) ≡
ρ(x⃗, t) − ρ̄(t)

ρ̄(t)
(2)

where ρ(x⃗, t) is the density and ρ̄(t) is the cosmic mean
density. The second fluid variable is the divergence of the
peculiar velocity

θ ≡ ∇jT
j
0 /(p̄ + ρ̄) = ∇⃗ · v⃗, (3)

where v⃗ is the (proper) peculiar velocity. Choosing θ in-
stead of the vector v implies that we have assumed v to
be irrotational. This approximation is sufficiently accu-
rate in the linear regime, even for unconventional dark
energy models and minimally coupled modified gravity
models.

In principle, observations of large-scale structure can
directly measure the four perturbed variables introduced
above: the two scalar potentials ψ and φ, and the den-
sity and velocity perturbations specified by δ and θ. As
shown below, these variables are the key to distinguishing
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and in section IV summarize the effects that the modi-
fied growth history can have on the observed large scale
structure correlations. In section V, we summarize the
results of Monte Carlo Markov Chain (MCMC) analyses
to place constraints on the cosmic growth history, and
draw together our findings and discuss the implications
for future work in section VI.

II. MODELING THE GROWTH OF
STRUCTURE

We consider the conformal Newtonian gauge to de-
scribe the metric

ds2 = −a(τ)2[1 + 2ψ(x, t)]dτ2 + a(τ)2[1− 2φ(x, t)]dx2 (1)

where a is the scale factor (a = 1 today), τ is confor-
mal time, x are comoving coordinates, and ψ and φ are
the two Newtonian potentials describing temporal and
spatial perturbations to the metric respectively. We as-
sume units in which the speed of light c = 1. The
spatial element can be broken down into a radial, line
of sight, component, written in terms of the comoving
distance, χ =

∫ 1
a dτ , and a 2D angular element dΩ2,

dx2 =
(

dχ2 + r(χ)2dΩ2
)

, where r(χ) is the comoving
angular diameter distance.

A. Growth in General Relativity

The growth of inhomogeneities is characterized by
the evolution of the fractional over-density distribution,
δ(k, a) ≡ ρ(k, a)/ρ̄(a)−1, and the divergence of the pecu-
liar velocity, θ(k, a), where k is the comoving wavenum-
ber.
We employ energy-momentum conservation in the per-

turbed fluid to obtain the fluid equations for each type of
matter, with the density and peculiar velocities evolving
according to [61],

δ̇ = −(1 + w)(θ − 3φ̇)− 3H(c2s − w)δ (2)

θ̇

k2
= −H(1 + 3w)

θ

k2
−

ẇ

1 + w

θ

k2
+

c2s
(1 + w)

δ − σ + ψ.(3)

Here w = P/ρ is the matter’s equation of state and c2s =
∂P/∂ρ the sound speed.
To wholly describe the growth history of density and

velocity perturbations (up to initial conditions) two fur-
ther equations are required. We use the Poisson equation,
combining the time-time and time-space components of
the perturbed Einstein equations, and the anisotropic
space-space component,

k2φ = −4πGa2
∑

ρi∆i (4)

ψ − φ = −12πGa2
∑

i

ρi(1 + wi)
σi
k2

. (5)

where ∆i ≡ δi+3H(1+w)θi/k2 is the rest-frame density
perturbation of matter species i, H(a) = ȧ/a is the Hub-
ble expansion factor, where dots represent derivatives
with respect to conformal time and σi the anisotropic
shear stress. Equation 5 shows that the two potentials
become effectively equal in the matter and dark energy
dominated eras, when there are negligible anisotropic
shear stresses.

B. Deviations from the standard growth scenario

We parameterize deviations to the growth history by
modifying equations (4) and (5) with two scale and time-
dependent functions, Q(k, a) and R(k, a),

k2φ = −4πGQa2
∑

i

ρi∆i (6)

ψ −Rφ = −12πGQa2
∑

i

ρi(1 + w)
σi
k2

. (7)

We assume throughout that matter remains minimally
coupled to gravity so that the fluid equations (2) and (3)
remain unchanged.
In the context of modified gravity scenarios, equation

(6) describes a modified Poisson equation in which the
gravitational potential responds differently to the pres-
ence of matter, while (7) allows an inequality between
the two gravitational potentials, even at late times when
anisotropic shear stresses are negligible, with ψ ≈ Rφ.
Note that the time-evolving modifications (6) and (7)
are consistent with the predicted evolution of the super-
horizon curvature fluctuations, as discussed for example
in [62], (7) simply provides the constraint equation by
which both φ and ψ superhorizon solutions can be found.
Appendix A summarizes how the modified growth his-

tory is incorporated into the publicly available CAMB
code [63], used to predict the effect of the model on CMB
and galaxy statistics.
The naming conventions for these phenomenological

modifications have been somewhat varied in the litera-
ture: Q has been defined in other works as Q [64], f [65],
Geff/G [12, 66], g [14] and µ [11, 28, 30], while R is
defined as 1/(1 + η) [66], 1/η [12, 14], 1/γ [11, 28], and
1 + ϖ, [27, 30, 67]. We choose Q and R here in order
to avoid confusion with the synchronous gauge metric
variable, η, discussed in appendix A and growth history
variables, g0, f , and γ, introduced in section II C.
Theoretical models of modified gravity can be de-

scribed using (6) and (7), for example exhibiting time-
dependent, but largely scale-independent variations, as
with DGP on sub-horizon scales, in the quasi-static
regime, [68–70], or with both time and scale dependence,
for example in f(R) theories [70, 71]. We consider two
phenomenological models in our analysis that allow for
both time and scale dependence in the modifications.
The first (Model I) parameterizes Q and R with mono-

tonically evolving, time- and space-dependent functions
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Gravitational lensing magnifies (convergence=κ) and distorts 
shape (shear=γ) of galaxies. Weak lensing limit: |γ|, |κ| << 1.

How to probe MG?
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How to probe MG?
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Figure 9.11. Redshift space distortions. In each case, a contour of constant density (circular 
in real space) is distorted in redshift space so that it looks asymmetric. Arrows denote direction 
and magnitude of velocity. In the case of nonlinear collapse, the velocities are so large that a 
point on "our side" (the bottom) of the center is mapped onto a point on the opposite side 
(compare the position of the solid dot on the bottom left and right). 

ness, requiring careful treatment not only of linear overdensities, but also of the 
much more complicated effects of nonlinearities. We will content ourselves with a 
quantitative treatment of linear distortions, since this applies on large scales and is 
the starting point for all further work. 

Suppose we measure the power spectrum in redshift space. How is this distorted 
power spectrum related to the underlying true spectrum in real space? Kaiser (1987) 
first solved this problem, working within the context of linear theory. The starting 
point is the realization that the number of galaxies in a particular region is the 
same, whether we use redshift-space or real-space coordinates. Therefore, 

(9.35) 

where n is the density of galaxies at x in real space, and ns is the density 
in redshift space. The infinitesimal volume around a point in redshift space is 
d3x s = dxsx; sin BdBd¢, while the volume around a point in real space is d3x = 
dxx2 sin BdBd¢. The angular volume elements are identical, so 

ns(xs) = n(x)J (9.36) 
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of ∇2(φ − ψ)/(βδ). It does not depend on galaxy bias
or on the initial matter fluctuations, at least in the lin-
ear regime. Modifications in gravity will in general leave
signatures in either β and/or the Poisson equation.

Galaxy-Velocity Cross-correlation.— A galaxy’s
peculiar motion shifts its apparent radial position from
xz to xs

z = xz +vz/H(z) in redshift space, where vz is the
comoving radial peculiar velocity. The coherent velocity
component changes the galaxy number overdensity from
δg to δs

g ≃ δg −∇zvz/H(z). Galaxy random motions mix
different scales and damps the power spectrum on small
scales. The redshift space galaxy power spectrum there-
fore has the general form ([17] and references therein)

P s
g (k) =

[

Pg(k) + 2u2Pgθ(k) + u4Pθ(k)
]

F

(

k2u2σ2
v

H2(z)

)

(1)

where u = k∥/k is the cosine of the angle of the k vector
with respect to radial direction; Pg, Pgθ , Pθ are the real
space galaxy power spectra of galaxies, galaxy-θ and θ,
respectively; σv is the 1D velocity dispersion; and F (x)
is a smoothing function, normalized to unity at x = 0,
determined by the velocity probability distribution. This
simple formula has passed tests in simulations on scales
where δ <

∼ 1 [17]. The derivation of Eq. (1) is quite
general, so it should be applicable even when gravity is
modified.

The distinctive dependence of P s
g on u allows for si-

multaneous determination of Pg, Pgθ and Pθ [18]. The
parameters we want to determine are the band powers of
Pgθ(k) 1 defined such that P (k) = Pα if kα ≤ k < kα+1,

where k1 < k2 < · · · < kα < · · · . We denote P (1)
α

as the band power of Pgθ. For a ki in each k bin,
we have a measurement of P s

g , which we denote as Pi.

The unbiased minimum variance estimator of P (1)
α is

1 Distance D and H are required to translate the observed galaxy
angular and redshift separation to k. In general, errors in D and
H measurements cause both horizontal and vertical shifts in the
EG plot. Both D and H will be measured by methods like type
Ia supernovae and baryon acoustic oscillations with 1% accuracy,
much smaller than the k bin size adopted, so the horoziontal
shift is negligible. Errors in D show up in both Pgθ and the
Cκg → P∇2(ψ−φ)g inversion through l = kD and thus largely

cancel in evaluating EG. Errors in H(z) only show up in Pgθ

measurement and thus cause a net shift in the value of EG. For
1% error in H, the fractional error in EG is ≤ (neff + 3)1% ≤

3%. Here, neff is the effective power index of the corresponding
power spectra. For the fiducial ΛCDM cosmology, it is negative
in relevant k range. Thus errors induced by uncertainties in
D(z) and H(z) measurement will be sub-dominant, except for
SKA, which requires better control over systematic errors in D
and H measurement. For simplicity, we neglect this potential
error source. Measuring Pgθ also requires to marginalize over
σv. However, in the linear regime k <

∼ 0.2h/Mpc, k2σ2
v/H2 ≪ 1

and F (k2u2σ2
v/H2) ≃ 1, for typical value σv ∼ 300 km/s. Thus

the exact value of σv is not required for our analysis. Without
loss of generality, we adopt σv = 300 km/s.

P̂ =
∑

WiPi, where Wi = Fi

2σ2

i

(λ1 + λ2u2
i + λ3u4

i ). Here,

Fi ≡ F (kuiσv/H), σ2
i is the variance of Pi and the three

Lagrange multipliers λα (α = 1, 2, 3) is determined by

λ = (0,
1

2
, 0) · A−1 ; Amn =

∑

i

u2(m+n−2)
i

F 2
i

2σ2
i

. (2)

Galaxy-galaxy lensing.— Weak lensing is sensitive
to the convergence κ, the projected gravitational poten-
tial along the line of sight:

κ =
1

2

∫ χs

0
∇2(ψ − φ)W (χ,χs)dχ . (3)

Here, W is the lensing kernel. For a flat universe, χ, χs

are the comoving angular diameter distance to the lens
and source, respectively. Eq. 3 is a pure geometric result
and can be applied to any modified gravity models where
photons follow null geodesics.

A standard method to recover the lens redshift infor-
mation is by the lensing-galaxy cross correlation. For
galaxies in the redshift range [z1, z2], the resulting cross
correlation power spectrum under the Limber’s approxi-
mation is

Cκg(l) =

(

4

∫ χ2

χ1

ng(χ)dχ

)−1

(4)

×

∫ χ2

χ1

W (χ,χs)ng(χ)P∇2(ψ−φ)g(
l

χ
, z)χ−2dχ

≃
W (χ̄,χs)

4l∆χ

∫ l/χ1

l/χ2

P∇2(ψ−φ)g(k, z̄)dk

=
∑

α

fα(l)P (2)
α .

Here, χ1,2 are the comoving angular diameter distance to
redshift z1,2 and χ̄ is the mean distance. The band power

P (2)
α of P∇2(ψ−φ)g is defined at the same k range as P (1)

α .
In practice, we measure the band power Cκg(l, ∆l), cen-
tered at l with band width ∆l. The weighting fα(l, ∆l)
is defined correspondingly. For each l, only a fraction of
α having fα(l, ∆l) ̸= 0 contribute.

A discriminating probe of gravity.— With the
above measurements, one can construct an estimator

ÊG =
Cκg(l, ∆l)

3H2
0a−1

∑

α fα(l, ∆l)P (1)
α

, (5)

whose expectation value is

⟨ÊG⟩ =

[

∇2(ψ − φ)

−3H2
0a−1θ

]

k= l
χ̄

,z̄

=

[

∇2(ψ − φ)

3H2
0a−1βδ

]

k= l
χ̄

,z̄

≡ EG .

(6)
The fractional error on ÊG is

⟨∆E2
G⟩

E2
G

≃
∆C2

C2
κg

+

∑

α f2
α⟨(δP

(1)
α )2⟩

(
∑

α fαP (1)
α )2

, (7)

f = d lnD/d ln a

✓ ⌘ r · v/H

= ��̇/H = �f�

Kaiser 1987 
Dodelson 2003
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coherent pipeline in CosmoMC constraining 
cosmology from overlapping spectroscopic & 

tomographic lensing surveys:       
RSD, galaxy-galaxy lensing, cosmic shear.

Combining WL and RSD (1)

5 statistics: (ξ+, ξ-, γt, P0, P2).  
Full covariance included.

tomography employed. marginalizing over 
intrinsic alignments, photo-z errors, and 

baryons (13 nuisance). Internally parallelized.



Combining WL and RSD (2)

Data: (RCSLenS + CFHTLenS)/(WiggleZ + BOSS).  
Also applicable to KiDS/(2dFLenS+boss).  

External datasets can be included. 

Applied to data, first pipeline to self-
consistently treat WL and RSD (full covariance), 

and first to marginalize all key systematics.

Use data vector for MG.  
Also dark energy, curvature, neutrino mass, etc. 

Plan to make pipeline public later this year.



Current Lensing and RSD Surveys
RCSLenS: gravitational physics through cross-correlation 5

Figure 1. (R.A., Dec.) distribution in the Northern Galactic Pole (NGP) and Southern Galactic Pole (SGP) of the datasets used in
this analysis: the BOSS DR10 galaxy sample (black dots), the WiggleZ survey regions (red rectangles), the CFHTLenS fields (green
rectangles) and the RCSLenS fields (blue rectangles).

Table 1. Statistics for CFHTLenS and RCSLenS fields cross-correlated with WiggleZ and BOSS data. The effective (unmasked) areas
are shown for the full source field, the set of pointings passing the cosmology-independent systematics cull, and the pointings which
contain a minimum of four filters such that photometric redshifts are available. The effective weighted source density as computed by
Equation 19 is listed as σsource. The number of lenses contained in the overlapping areas of WiggleZ, CMASS and LOWZ are displayed
as NWGZ, NCMASS and NLOWZ. Some fields have overlap with both WiggleZ and BOSS lens samples, which would result in potentially
correlated measurements. In such cases the lens sample producing the lower signal-to-noise measurement, indicated with an asterisk, is
excluded from the analysis.

Field Aeff [all] Aeff [no-sys] Aeff [photo-z] σsource NWGZ NCMASS NLOWZ

[deg2] [deg2] [deg2] [arcmin−2]

CFHTLS W1 56.0 42.9 56.0 14.0 - 3874 2007
CFHTLS W4 17.6 13.3 17.6 13.1 - 2470 1180

RCS 0047 57.8 52.3 41.0 5.4 15250∗ 6194 3767
RCS 0133 26.3 21.6 14.0 4.5 - 2477 1270
RCS 0310 63.5 46.8 54.6 4.9 16773 - -
RCS 1303 13.2 10.1 8.4 5.3 - 4079 1180
RCS 1514 63.4 58.2 31.9 5.7 3325∗ 7310 3641
RCS 1645 21.9 18.0 20.0 6.7 - 2402 1323
RCS 2143 65.5 51.9 47.0 5.7 27757 6217∗ 3040∗

RCS 2329 36.6 31.8 32.6 6.4 1987∗ 3486 1543
RCS 2338 60.7 53.5 20.7 4.9 15134 - -

lens survey pairings: RCSLenS-WiggleZ, RCSLenS-CMASS,
RCSLenS-LOWZ, CFHTLenS-CMASS and CFHTLenS-
LOWZ. For the cosmological measurements we will addition-
ally split the WiggleZ lenses into two independent redshift
bins, 0.15 < z < 0.43 (“WGZLoZ”) and 0.43 < z < 0.7
(“WGZHiZ”), which coincide with the redshift ranges of
LOWZ and CMASS, respectively, producing a total of six
possible pairings. In the analyses that follow we will of-

ten present separate measurements for these six cases, opti-
mally combining the measurements in each individual field
using inverse-variance weighting. We note that Miyatake et
al. (2014) recently presented galaxy-galaxy lensing measure-
ments for CFHTLenS-CMASS, with the aim of understand-
ing the properties of the dark matter haloes traced by the
lenses.
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straints are compromised for multiplicative systemat-
ics at the 1% level, and mean additive shear system-
atics at the 10−5 level. The situation is analogous for
the uncertainty in the photometric redshift distribu-
tion of the sources, where the parameter constraints
from lensing are either heavily influenced (∼> 1% prior)
or minimally influenced (∼< 0.1% prior) by the photo-
metric uncertainties [49, 67, 122]. Fortunately, it has
been shown that a complementary spectroscopic sam-
ple of 104 − 105 galaxies efficiently protects against
photometric redshift errors as well as catastrophic
outliers [141], whereas alternative methods may even
satisfy the systematic requirements from photometry
alone [142, 143].
Thus, in this work, we will assume that these sys-

tematic difficulties have been largely overcome with
minimal influence on the constraints by the time
the data from the considered next-generation lens-
ing probes are analyzed. At the same time, we are
not incorporating further statistics that can be ex-
tracted from weak lensing, such as that included in
the bispectrum [144–147], or utilizing the complemen-
tarity between measurements of shear and magnifica-
tion [125, 149].
We end this section with a summary of the CMB

temperature, polarization and lensing noise proper-
ties. The effective experimental noise power spec-
trum associated with the temperature and polariza-
tion fields is given by a summation over the number
of channels,

Naa(ℓ) =

[

Nchan
∑

i=1

((

∆a

T

)

i

el(l+1)θi/16 ln 2

)−2
]−1

,(43)

where ∆a is the detector noise for a ∈ (T,E), θ de-
notes the beam FWHM, and we assume NTE(ℓ) = 0.
The optimal noise power spectrum of a quadratic es-
timator of the convergence field is given by [150, 151]

Nκcκc(ℓ) =

[

∑

l1l2

(CTT
l2

Fl1ll2 + CTT
l1

Fl2ll1)
2

2(CT̃ T̃
l1

+N T̃ T̃
l1

)(CT̃ T̃
l2

+N T̃ T̃
l2

)

]−1

× (l(l + 1)/2)2(2l + 1), (44)

where T̃ denotes the lensed temperature, and

Fl1ll2 =

√

(2l1 + 1)(2l+ 1)(2l2 + 1)

4π

(

l1 l l2
0 0 0

)

×
1

2
[l(l + 1) + l2(l2 + 1)− l1(l1 + 1)], (45)

where the quantity in brackets is the Wigner-3j sym-
bol. Finally, we define

C̃ab(ℓ) =

√

2f−1
sky;cmb

2ℓ+ 1

(

Cab(ℓ) + δabN
ab(ℓ)

)

, (46)

where {a, b} ∈ {T,E,κc}. Values for the considered
CMB experiments are given in Table III. Secondary

non-Gaussianities in the covariance from the trispec-
trum (due to weak lensing, the ISW effect, and the
SZ effect) have been shown to degrade the Planck
and EPIC parameter constraints by 20% and 30%
[152, 154] respectively; however, their full account lies
beyond the scope of this work.

B. Comprehensive Parameter Forecasts

In previous sections we explored the qualitative in-
fluence of EDE on the lensing, galaxy, supernova, and
CMB observables, via its impact on the expansion rate
and matter power spectrum. We now examine how
these corrections quantitatively affect the combined
constraints of the dark energy. To this end, we utilize
a Fisher matrix formalism [75, 155]:

F total
αβ =

∑

ℓ

∆ℓ× Tr

[

C̃−1
ℓ

∂Cℓ

∂pα
C̃−1

ℓ

∂Cℓ

∂pβ

]

+ F SN
αβ ,

(47)
where the decoupled SN fisher matrix is defined in
Eqn. 34, and for the combined observational analysis
the symmetric matrix

Cℓ =

⎛
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++ +− +t +0 +2

−+ −− −t −0 −2

t+ t− tt t0 t2

0+ 0− 0t 00 02

2+ 2− 2t 20 22

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (48)

such that {κ} consists of the spectra from five tomo-
graphic bins (κ1,κ2,κ3,κ4,κ5) and {g} consists of the
spectra from five tomographic bins (g1, g2, g3, g4, g5).

C{κ}{κ}
ℓ , C{g}{g}

ℓ , C{κ}{g}
ℓ are therefore 5 × 5 subma-

trices, and C{κ}κc

ℓ , C{κ}T
ℓ , C{g}κc

ℓ , C{g}T
ℓ are 5 × 1

submatrices. For the terms in Eqn. 47 we carry out
two-sided numerical derivatives with steps of 2% in
most parameter values. We have confirmed the ro-
bustness of our results to other choices of step size.
In Tables IV-X, we illustrate prospective constraints

from Planck/EPIC CMB temperature (T ), E-mode
polarization (E), lensing (κc), LSST/JDEM weak
lensing tomography (κ), galaxy tomography (g), SNe
(s), and their combined impact (including all relevant
cross-correlations shown in Eqn. 48) on the 12 consid-
ered cosmological parameters (Ωd0, Ωe, Ωch2, Ωbh2,
Ωk,

∑

mν , Neff , w0, ns, dns/d ln k, ∆2
R, τ).

The contents of our tables are as follows: In Ta-
ble IV and Table V we consider only a flat universe,
with curvature always considered in the other tables.
These tables present the separate constraints on the
underlying cosmology obtained from the CMB, lens-
ing tomography, galaxy tomography, and SNe, along
with the synergies attained from a combined analy-
sis of these probes. Table V differs from Table IV in
that it fixes the early dark energy density. Table VI
differs from Table IV in that it allows for variation

SJ et al 2015, in prep
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Figure 5. Best halo-model fits to the power spectra of the OWLS sim-
ulations for the DMONLY, AGN, REF and DBLIM models up to k =
10hMpc−1 at z = 0.5 obtained by fitting both A and η0 (equations 14
and 26) to each model at this redshift. One can see that the freedom in-
troduced by allowing these parameters to vary is able to capture both the
up- and down-turn in power that feedback introduces, compared to a dark-
matter model, at different scales. This is best appreciated in the lower panel,
in which the ratio of each model to the DMONLY COSMIC EMU prediction
for the OWLSWMAP3 cosmology is shown (black crosses above).

structure relations, using information that is measured in baryonic
simulations (Zentner et al. 2008; Duffy et al. 2010; Zentner et al.
2013; Semboloni et al. 2013; Mohammed et al. 2014). The general
trend is that gas cooling increases the central density of haloes
whereas violent feedback, such as that from AGN, decreases the
concentration. How this translates into the matter power spectrum
in simulations is considered in van Daalen et al. (2011) where it
was shown that per cent level changes in ∆2(k) can arise at k =
0.3hMpc−1 as a result of strong AGN feedback. Semboloni et al.
(2011), Eifler et al. (2014) and Mohammed et al. (2014) all showed
that failing to account for feedback would strongly bias cosmolog-
ical constraints from the weak lensing Dark Energy Survey (DES)
if the most extreme feedback scenarios apply to our Universe and
and constraints from Euclid would be severely biased for any feasi-
ble feedback scenario. Duffy et al. (2010), Semboloni et al. (2011)
and Mohammed et al. (2014) also showed that the main effects of
baryonic feedback could be captured using a halo-model prescrip-
tion, considering how feedback would alter the internal structure of
haloes.

We use power-spectra from the OverWhelmingly Large Simu-
lations (OWLS; Schaye et al. 2010; spectra from van Daalen et al.
20112) of: a dark matter (DMONLY) model; a model that has pre-
scriptions for gas cooling, heating, star formation and evolution,
chemical enrichment and supernovae feedback (REF); a model

2 http://www.strw.leidenuniv.nl/VD11/
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Figure 6. Best matches to the power spectrum from the OWLS simulations
found by varying halo structure via A and η0 (equations 14, 26 and 29)
from z = 0 to 1. The contours enclose regions of parameter space that
match the power spectra with an average error of 2.5 per cent (inner) and
5 per cent (outer) from k = 0.01 to 10hMpc−1 and the crosses mark
the best fit point. These ranges can be used to place a prior on the range of
η0 and A to be explored in a cosmological analysis as they encompass the
range of behaviour expected from plausible feedback models. The dashed
line (equation 30) shows a relation between η0 and A that could be used to
provide a single-parameter fit to all models. The grey cross is the best fitted
value to all the COSMIC EMU simulations, whereas the black cross is the
best match to the specific cosmology used in the DMONLY model.

that is similar to REF but with the addition of active-galactic
nuclei (AGN) feedback (called AGN); and a model similar to
REF but which additionally has a top-heavy stellar initial-mass
function and extra supernovae energy in wind velocity (DBLIM–
called DBLIMFV1618 in van Daalen et al. 2011). It was shown in
van Daalen et al. (2011) that the difference in power between the
DMONLY and AGN models is particularly large.

We fit the power spectra from the OWLS simulations using our
calibrated halo-model approach with a halo profile that is altered
to reflect baryon bloating and gas cooling. Again, our new fitted
halo profiles may not match those of simulated haloes exactly but
our aim is to match the power spectrum accurately. However, we
would expect the trends observed in the profiles of simulated haloes
to be respected by any modification to halo profiles in HMCODE.
For example, if we require an enhanced concentration to fit data
for a particular model in OWLS, then haloes measured in this bary-
onic model should display enhanced concentrations relative to their
DMONLY counterparts. This approach differs from that presented
in Semboloni et al. (2013), Fedeli (2014), Fedeli et al. (2014) and
Mohammed et al. (2014) in that we do not attempt to add accurate
profiles for the gas and stars into the halo model, but instead look
for a more empirical modification that is able to match data at the
level of the power spectrum for k < 10hMpc−1.

Given the above discussion we might expect that two param-
eters would suffice: One to capture the increased concentration as
gas cools in halo cores and one to capture the puffing up of halo
profiles due to more violent feedback. To fit the baryonic models
we allow ourselves to vary the parameter A in the c(M) relation
(equation 14) and the parameter η0, where η is defined in equa-
tion (26) and η0 is the first parameter in the full expression for η in
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structure relations, using information that is measured in baryonic
simulations (Zentner et al. 2008; Duffy et al. 2010; Zentner et al.
2013; Semboloni et al. 2013; Mohammed et al. 2014). The general
trend is that gas cooling increases the central density of haloes
whereas violent feedback, such as that from AGN, decreases the
concentration. How this translates into the matter power spectrum
in simulations is considered in van Daalen et al. (2011) where it
was shown that per cent level changes in ∆2(k) can arise at k =
0.3hMpc−1 as a result of strong AGN feedback. Semboloni et al.
(2011), Eifler et al. (2014) and Mohammed et al. (2014) all showed
that failing to account for feedback would strongly bias cosmolog-
ical constraints from the weak lensing Dark Energy Survey (DES)
if the most extreme feedback scenarios apply to our Universe and
and constraints from Euclid would be severely biased for any feasi-
ble feedback scenario. Duffy et al. (2010), Semboloni et al. (2011)
and Mohammed et al. (2014) also showed that the main effects of
baryonic feedback could be captured using a halo-model prescrip-
tion, considering how feedback would alter the internal structure of
haloes.

We use power-spectra from the OverWhelmingly Large Simu-
lations (OWLS; Schaye et al. 2010; spectra from van Daalen et al.
20112) of: a dark matter (DMONLY) model; a model that has pre-
scriptions for gas cooling, heating, star formation and evolution,
chemical enrichment and supernovae feedback (REF); a model
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provide a single-parameter fit to all models. The grey cross is the best fitted
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best match to the specific cosmology used in the DMONLY model.

that is similar to REF but with the addition of active-galactic
nuclei (AGN) feedback (called AGN); and a model similar to
REF but which additionally has a top-heavy stellar initial-mass
function and extra supernovae energy in wind velocity (DBLIM–
called DBLIMFV1618 in van Daalen et al. 2011). It was shown in
van Daalen et al. (2011) that the difference in power between the
DMONLY and AGN models is particularly large.

We fit the power spectra from the OWLS simulations using our
calibrated halo-model approach with a halo profile that is altered
to reflect baryon bloating and gas cooling. Again, our new fitted
halo profiles may not match those of simulated haloes exactly but
our aim is to match the power spectrum accurately. However, we
would expect the trends observed in the profiles of simulated haloes
to be respected by any modification to halo profiles in HMCODE.
For example, if we require an enhanced concentration to fit data
for a particular model in OWLS, then haloes measured in this bary-
onic model should display enhanced concentrations relative to their
DMONLY counterparts. This approach differs from that presented
in Semboloni et al. (2013), Fedeli (2014), Fedeli et al. (2014) and
Mohammed et al. (2014) in that we do not attempt to add accurate
profiles for the gas and stars into the halo model, but instead look
for a more empirical modification that is able to match data at the
level of the power spectrum for k < 10hMpc−1.

Given the above discussion we might expect that two param-
eters would suffice: One to capture the increased concentration as
gas cools in halo cores and one to capture the puffing up of halo
profiles due to more violent feedback. To fit the baryonic models
we allow ourselves to vary the parameter A in the c(M) relation
(equation 14) and the parameter η0, where η is defined in equa-
tion (26) and η0 is the first parameter in the full expression for η in
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An implication of this is that the value of c measured for simu-
lated haloes depends on the halo definition used – particularly the
∆v critereon, the algorithm used to identify haloes and the scheme
used for breaking up spurious haloes or unbinding particles (e.g.,
Knebe et al. 2011).

Since the genesis of the NFW profile a large number of re-
lations between the concentration and mass of haloes have been
developed. The general trend is that haloes of higher mass are
less concentrated than those of lower mass, attributed to the fact
that larger haloes formed in the more recent past and that the cen-
tral density of a halo retains a memory of the cosmological den-
sity at its formation time. The original c(M) relation proposed by
Navarro et al. (1997) was shown to produce an incorrect redshift
evolution by Bullock et al. (2001), who provided an updated re-
lation based around the concept of halo formation time. Around
the same time a similar model by Eke et al. (2001) was introduced,
which was intended to predict the correct c(M) relation in the case
of models with the same background cosmological parameters but
different linear spectra, for example warm dark matter models com-
pared to a cold dark matter model. Lately focus has shifted to pro-
duce extremely accurate concentration-mass relations for the stan-
dard ΛCDM cosmological model (e.g., Neto et al. 2007; Gao et al.
2008) but these relations do not allow for general variations in cos-
mology. More recently Prada et al. (2012) and Klypin et al. (2014)
have suggested c(M) relations that are ‘universal’, in that they do
not depend on cosmology other than via the function σ(M) (equa-
tion 6). These relations predict that models with identical linear
spectra should share a c(M) relation, at odds with results from
the concentration emulator of Kwan et al. (2013), which produces a
different relation for models with identical linear spectra but differ-
ent growth histories (e.g., a ΛCDM model compared to a wCDM
model at z = 0 with identical σ8).

We choose to use the relations of Bullock et al. (2001) be-
cause it was derived by fitting to a wide variety of cosmologies and
also because their haloes were defined with a cosmology-dependent
overdensity criterion, and therefore naturally adapt to the changes
that we plan to make to the halo model in section 3. The c(M) for-
mula relates the concentration of a halo, identified at redshift z, to
a formation redshift, zf , via

c(M, z) = A
1 + zf
1 + z

, (14)

where the parameter A is deduced by fitting to simulated haloes.
The formation redshift is calculated by finding the redshift at which
a fraction (f , also derived from simulated haloes) of the eventual
halo mass has collapsed into objects, using the Press & Schechter
(1974) theory:
g(zf)
g(z)

σ(fM, z) = δc , (15)

where g(z) is the linear theory growth function normalised such
that g(z = 0) = 1, σ2 is the variance of the linear density field fil-
tered on the scale of a sphere containing a massM (equation 6;M
is the mass enclosed in a sphere with radius R in the homogeneous
universe), and δc is the linear-theory collapse threshold. The value
of δc is calculated from the spherical collapse model: δc ≃ 1.686
for Ωm = 1, with a very weak dependence on cosmology (see
Eke, Cole, & Frenk 1996 for flat models with Λ and Lacey & Cole
1993 for matter-dominated open models). In Bullock et al. (2001)
the parameters A = 4 and f = 0.01 were found from fitting the
c(M) relation to halo profiles over a range of masses and cosmolo-
gies.

For very massive haloes equation (15) can assign a formation

redshift that is less than the redshift under consideration, suggest-
ing that the halo formed in the future. In our calculations we rem-
edy this by setting c = A if zf < z, although it makes very little
practical difference to our power spectrum calculations.

It was shown in Dolag et al. (2004) and Bartelmann et al.
(2005) that the c(M) relations proposed in Navarro et al. (1997),
Bullock et al. (2001) or Eke et al. (2001) failed to reproduce the ex-
act variations in concentration seen in models with identical linear-
theory power spectra but different models of dark-energy. Differ-
ences in concentration arise because haloes form at different times
in these models, despite having matched linear theory at z = 0, and
the exact form of this hysteresis was not being captured by existing
relations (although the general trend is captured by Bullock et al.
2001). Dolag et al. (2004) proposed a simple correction scheme
that augments the ΛCDM concentration for a model by the ratio
of asymptotic (z → ∞) growth factors of the dark-energy cosmol-
ogy to the standard ΛCDM one:

cDE = cΛ
gDE(z → ∞)

gΛ(z → ∞)
, (16)

and we implement this correction in our incarnation of the halo
model. The effect of dark energy on halo concentrations can be
seen at the level of the power spectrum in McDonald et al. (2006),
in Fig. 10 of Heitmann et al. (2014) and also in our Fig. A1. It can
be seen at the level of measured halo concentrations using the c(M)
emulator or Kwan et al. (2013). Because halo concentration affects
small-scale power (equation 8) a corollary of this is that the full
non-linear spectrum will be different at small scales in different
dark-energy models, even if they share an identical linear spectrum.
Any scheme in which the calculation of the non-linear power de-
pends solely on the linear power will thus fail to capture this detail.

The mass function of haloes (the fraction of haloes in the mass
rangeM toM + dM ) has been measured from simulations (e.g.,
Sheth & Tormen 1999; Jenkins et al. 2001) and has been shown
to have a near-universal form, almost independent of cosmology,
when expressed in terms of the variable

ν ≡ δc
σ(M)

. (17)

The mass function can be expressed as a universal function in f(ν),
which is related to F (M) that appears in equation (8) via

M
ρ̄
F (M) dM = f(ν) dν . (18)

This universality was predicted in an approach pioneered by
Press & Schechter (1974) whereby the mass function was calcu-
lated explicitly by considering what fraction of the density field,
when smoothed on a given mass scale, is above the critical thresh-
old for collapse (δc) at any given time. The expression that they
calculated for the mass function is the Gaussian

f(ν) =

√

2
π
e−ν2/2 , (19)

but this is not a good fit to the the mass function as mea-
sured in simulations; therefore we use the improved formula of
Sheth & Tormen (1999), which was an empirical fit to simulations:

νf(ν) = A′

(

1 +
1
ν′p

)(

ν′

2

)1/2 e−ν′2/2

√
π

, (20)

where ν′ = aν and the parameters of the model are a = 0.707,
A′ = 0.322 and p = 0.3. A′ is constrained by the prop-
erty that the integral over the mass function must equal unity. In
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Figure 5. Best halo-model fits to the power spectra of the OWLS sim-
ulations for the DMONLY, AGN, REF and DBLIM models up to k =
10hMpc−1 at z = 0.5 obtained by fitting both A and η0 (equations 14
and 26) to each model at this redshift. One can see that the freedom in-
troduced by allowing these parameters to vary is able to capture both the
up- and down-turn in power that feedback introduces, compared to a dark-
matter model, at different scales. This is best appreciated in the lower panel,
in which the ratio of each model to the DMONLY COSMIC EMU prediction
for the OWLSWMAP3 cosmology is shown (black crosses above).

structure relations, using information that is measured in baryonic
simulations (Zentner et al. 2008; Duffy et al. 2010; Zentner et al.
2013; Semboloni et al. 2013; Mohammed et al. 2014). The general
trend is that gas cooling increases the central density of haloes
whereas violent feedback, such as that from AGN, decreases the
concentration. How this translates into the matter power spectrum
in simulations is considered in van Daalen et al. (2011) where it
was shown that per cent level changes in ∆2(k) can arise at k =
0.3hMpc−1 as a result of strong AGN feedback. Semboloni et al.
(2011), Eifler et al. (2014) and Mohammed et al. (2014) all showed
that failing to account for feedback would strongly bias cosmolog-
ical constraints from the weak lensing Dark Energy Survey (DES)
if the most extreme feedback scenarios apply to our Universe and
and constraints from Euclid would be severely biased for any feasi-
ble feedback scenario. Duffy et al. (2010), Semboloni et al. (2011)
and Mohammed et al. (2014) also showed that the main effects of
baryonic feedback could be captured using a halo-model prescrip-
tion, considering how feedback would alter the internal structure of
haloes.

We use power-spectra from the OverWhelmingly Large Simu-
lations (OWLS; Schaye et al. 2010; spectra from van Daalen et al.
20112) of: a dark matter (DMONLY) model; a model that has pre-
scriptions for gas cooling, heating, star formation and evolution,
chemical enrichment and supernovae feedback (REF); a model

2 http://www.strw.leidenuniv.nl/VD11/
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Figure 6. Best matches to the power spectrum from the OWLS simulations
found by varying halo structure via A and η0 (equations 14, 26 and 29)
from z = 0 to 1. The contours enclose regions of parameter space that
match the power spectra with an average error of 2.5 per cent (inner) and
5 per cent (outer) from k = 0.01 to 10hMpc−1 and the crosses mark
the best fit point. These ranges can be used to place a prior on the range of
η0 and A to be explored in a cosmological analysis as they encompass the
range of behaviour expected from plausible feedback models. The dashed
line (equation 30) shows a relation between η0 and A that could be used to
provide a single-parameter fit to all models. The grey cross is the best fitted
value to all the COSMIC EMU simulations, whereas the black cross is the
best match to the specific cosmology used in the DMONLY model.

that is similar to REF but with the addition of active-galactic
nuclei (AGN) feedback (called AGN); and a model similar to
REF but which additionally has a top-heavy stellar initial-mass
function and extra supernovae energy in wind velocity (DBLIM–
called DBLIMFV1618 in van Daalen et al. 2011). It was shown in
van Daalen et al. (2011) that the difference in power between the
DMONLY and AGN models is particularly large.

We fit the power spectra from the OWLS simulations using our
calibrated halo-model approach with a halo profile that is altered
to reflect baryon bloating and gas cooling. Again, our new fitted
halo profiles may not match those of simulated haloes exactly but
our aim is to match the power spectrum accurately. However, we
would expect the trends observed in the profiles of simulated haloes
to be respected by any modification to halo profiles in HMCODE.
For example, if we require an enhanced concentration to fit data
for a particular model in OWLS, then haloes measured in this bary-
onic model should display enhanced concentrations relative to their
DMONLY counterparts. This approach differs from that presented
in Semboloni et al. (2013), Fedeli (2014), Fedeli et al. (2014) and
Mohammed et al. (2014) in that we do not attempt to add accurate
profiles for the gas and stars into the halo model, but instead look
for a more empirical modification that is able to match data at the
level of the power spectrum for k < 10hMpc−1.

Given the above discussion we might expect that two param-
eters would suffice: One to capture the increased concentration as
gas cools in halo cores and one to capture the puffing up of halo
profiles due to more violent feedback. To fit the baryonic models
we allow ourselves to vary the parameter A in the c(M) relation
(equation 14) and the parameter η0, where η is defined in equa-
tion (26) and η0 is the first parameter in the full expression for η in
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Figure 7. Correlation function η(r) as a function of comoving
galaxy pair separation r for different contributions of satellite
galaxies. Galaxies are selected to lie in the range 0.4 < z < 0.6
and be brighter than Mr < −20. Top panel : Results for late-type
galaxies, where black squares correspond to the signal without
satellite galaxies, red circles (blue upward triangles) to modelling
satellites as misaligned discs with redge−on = 0.1 (redge−on =
0.25), green downward triangles to satellites which are perfectly
aligned with the direction towards the central galaxy, and brown
diamonds to the signal for staellites only. Negative points are
shown as open symbols. Bottom panel : Results for early-type
galaxies, where black squares correspond to the signal without
satellite galaxies, red circles (blue upward triangles) to modelling
satellite shapes based on the reduced (simple) inertia tensor,
green downward triangles to satellites modelled according to the
Knebe08 model, and brown diamonds to satellites only. The inset
shows the fraction of central-central (cen-cen), satellite-central
(sat-cen), and satellite-satellite (sat-sat) galaxy pairs contribut-
ing to the correlations at different r. Note that differences in pair
composition between early- and late-type samples are small.

Sth) moves data points marginally away from zero but also
increases the scatter and hence the error bars.

Returning to the default models for central galaxies
but now including satellites in η(r), we obtain the correla-
tion functions shown in Fig. 7. Satellite galaxies modify the
correlation signal most significantly on scales below about
3Mpc/h where they clearly dominate the galaxy pairs avail-
able (see the inset). The models sth, sma, ert, and est

have similar correlation signals as the correponding central
galaxies (cf. the respective plots for satellite galaxies only
in Fig. 7) and thus cause little change in the total η(r). As
expected, satellite models with strong alignment like sal

boost the signal on small scales while models with less ellip-
tical shapes and weaker alignments (ekn) yield the strongest
suppression of η(r).

5 COMPARISON WITH INTRINSIC

ALIGNMENT OBSERVATIONS

5.1 Early-type samples & method

We now turn to the comparison of two-point statistics of
galaxy shapes from the Millennium Simulation with the re-
sults from observational data sets. To test our models of
early-type galaxy shapes, we will use the most compre-
hensive analysis to date by Joachimi et al. (2011), based
on several early-type SDSS samples. Relying on the shape
measurements by Mandelbaum et al. (2006), Joachimi et al.
(2011) jointly analysed early-type galaxy samples con-
structed from the SDSS Main and Luminous Red Galaxy
(LRG) spectroscopic samples, and the MegaZ-LRG sample
(Collister et al. 2007) which features photometric redshifts
based on SDSS ugriz photometry.

The SDSS Main and MegaZ-LRG samples were each
split into two redshift bins chracterised by a substantially
different mean luminosity. The LRG sample was divided
into three luminosity bins plus a further split in redshift,
so that in total 10 data sets were analysed, with quite uni-
form coverage of redshifts out to z ! 0.7 and rest-frame
magnitudes7 over the range −23 < Mr < −19. High-quality
shape measurements are available for about 74, 000 galaxies
with spectroscopic redshifts and more than 400, 000 galaxies
with photometric redshifts.

The selection criteria of the different samples are sum-
marised in Joachimi et al. (2011). If we applied these di-
rectly to the simulated galaxy catalogues, the analysis
would be subjected to the potentially unreliable colours pro-
duced by semi-analytic galaxy evolution models; see e.g.
Cohn et al. (2007) who found that the red sequence ex-
tracted from the Millennium Simulation has a tilt and larger
spread compared to observations (note that they did not use
a GALFORM-based model though). Hence we refrain from ap-
plying survey selection criteria that involve colours directly
to the simulation-based catalogues. Moreover the luminous
galaxies in the SDSS samples have low number densities and
cover about one order of magnitude larger survey area than
the combined Millennium catalogues, so that the selected
mock samples would be undesirably small.

Hence we chose a different route: after homogenising
the colours of the samples, Joachimi et al. (2011) jointly fit
a three-parameter model, finding excellent agreement be-
tween every data set and the model. It is based on the linear
alignment model (Hirata & Seljak 2004, 2010), heuristically
extended into the non-linear regime (Bridle & King 2007),
and fitted with extra redshift and luminosity dependencies,
which results in the matter-intrinsic power spectrum (for a
formal definition see the appendix of Joachimi et al. 2011)

Pmodel
δI (k, z, L) = −A C1 ρcr

Ωm

D(z)
Pδ(k, z) (11)

×
(

1 + z
1 + z0

)ηother ( L
L0

)β

,

with the matter power spectrum Pδ. The best-fit parameters

7 Note that rest-frame magnitudes of the observational data sets
were determined via the k + e-corrections of Wake et al. (2006),
but using the same values of the relevant cosmological parameters
as those of the Millennium Simulation.
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Figure 7. Correlation function η(r) as a function of comoving
galaxy pair separation r for different contributions of satellite
galaxies. Galaxies are selected to lie in the range 0.4 < z < 0.6
and be brighter than Mr < −20. Top panel : Results for late-type
galaxies, where black squares correspond to the signal without
satellite galaxies, red circles (blue upward triangles) to modelling
satellites as misaligned discs with redge−on = 0.1 (redge−on =
0.25), green downward triangles to satellites which are perfectly
aligned with the direction towards the central galaxy, and brown
diamonds to the signal for staellites only. Negative points are
shown as open symbols. Bottom panel : Results for early-type
galaxies, where black squares correspond to the signal without
satellite galaxies, red circles (blue upward triangles) to modelling
satellite shapes based on the reduced (simple) inertia tensor,
green downward triangles to satellites modelled according to the
Knebe08 model, and brown diamonds to satellites only. The inset
shows the fraction of central-central (cen-cen), satellite-central
(sat-cen), and satellite-satellite (sat-sat) galaxy pairs contribut-
ing to the correlations at different r. Note that differences in pair
composition between early- and late-type samples are small.

Sth) moves data points marginally away from zero but also
increases the scatter and hence the error bars.

Returning to the default models for central galaxies
but now including satellites in η(r), we obtain the correla-
tion functions shown in Fig. 7. Satellite galaxies modify the
correlation signal most significantly on scales below about
3Mpc/h where they clearly dominate the galaxy pairs avail-
able (see the inset). The models sth, sma, ert, and est

have similar correlation signals as the correponding central
galaxies (cf. the respective plots for satellite galaxies only
in Fig. 7) and thus cause little change in the total η(r). As
expected, satellite models with strong alignment like sal

boost the signal on small scales while models with less ellip-
tical shapes and weaker alignments (ekn) yield the strongest
suppression of η(r).

5 COMPARISON WITH INTRINSIC

ALIGNMENT OBSERVATIONS

5.1 Early-type samples & method

We now turn to the comparison of two-point statistics of
galaxy shapes from the Millennium Simulation with the re-
sults from observational data sets. To test our models of
early-type galaxy shapes, we will use the most compre-
hensive analysis to date by Joachimi et al. (2011), based
on several early-type SDSS samples. Relying on the shape
measurements by Mandelbaum et al. (2006), Joachimi et al.
(2011) jointly analysed early-type galaxy samples con-
structed from the SDSS Main and Luminous Red Galaxy
(LRG) spectroscopic samples, and the MegaZ-LRG sample
(Collister et al. 2007) which features photometric redshifts
based on SDSS ugriz photometry.

The SDSS Main and MegaZ-LRG samples were each
split into two redshift bins chracterised by a substantially
different mean luminosity. The LRG sample was divided
into three luminosity bins plus a further split in redshift,
so that in total 10 data sets were analysed, with quite uni-
form coverage of redshifts out to z ! 0.7 and rest-frame
magnitudes7 over the range −23 < Mr < −19. High-quality
shape measurements are available for about 74, 000 galaxies
with spectroscopic redshifts and more than 400, 000 galaxies
with photometric redshifts.

The selection criteria of the different samples are sum-
marised in Joachimi et al. (2011). If we applied these di-
rectly to the simulated galaxy catalogues, the analysis
would be subjected to the potentially unreliable colours pro-
duced by semi-analytic galaxy evolution models; see e.g.
Cohn et al. (2007) who found that the red sequence ex-
tracted from the Millennium Simulation has a tilt and larger
spread compared to observations (note that they did not use
a GALFORM-based model though). Hence we refrain from ap-
plying survey selection criteria that involve colours directly
to the simulation-based catalogues. Moreover the luminous
galaxies in the SDSS samples have low number densities and
cover about one order of magnitude larger survey area than
the combined Millennium catalogues, so that the selected
mock samples would be undesirably small.

Hence we chose a different route: after homogenising
the colours of the samples, Joachimi et al. (2011) jointly fit
a three-parameter model, finding excellent agreement be-
tween every data set and the model. It is based on the linear
alignment model (Hirata & Seljak 2004, 2010), heuristically
extended into the non-linear regime (Bridle & King 2007),
and fitted with extra redshift and luminosity dependencies,
which results in the matter-intrinsic power spectrum (for a
formal definition see the appendix of Joachimi et al. 2011)

Pmodel
δI (k, z, L) = −A C1 ρcr

Ωm

D(z)
Pδ(k, z) (11)

×
(

1 + z
1 + z0

)ηother ( L
L0

)β

,

with the matter power spectrum Pδ. The best-fit parameters

7 Note that rest-frame magnitudes of the observational data sets
were determined via the k + e-corrections of Wake et al. (2006),
but using the same values of the relevant cosmological parameters
as those of the Millennium Simulation.
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Figure 7. Correlation function η(r) as a function of comoving
galaxy pair separation r for different contributions of satellite
galaxies. Galaxies are selected to lie in the range 0.4 < z < 0.6
and be brighter than Mr < −20. Top panel : Results for late-type
galaxies, where black squares correspond to the signal without
satellite galaxies, red circles (blue upward triangles) to modelling
satellites as misaligned discs with redge−on = 0.1 (redge−on =
0.25), green downward triangles to satellites which are perfectly
aligned with the direction towards the central galaxy, and brown
diamonds to the signal for staellites only. Negative points are
shown as open symbols. Bottom panel : Results for early-type
galaxies, where black squares correspond to the signal without
satellite galaxies, red circles (blue upward triangles) to modelling
satellite shapes based on the reduced (simple) inertia tensor,
green downward triangles to satellites modelled according to the
Knebe08 model, and brown diamonds to satellites only. The inset
shows the fraction of central-central (cen-cen), satellite-central
(sat-cen), and satellite-satellite (sat-sat) galaxy pairs contribut-
ing to the correlations at different r. Note that differences in pair
composition between early- and late-type samples are small.

Sth) moves data points marginally away from zero but also
increases the scatter and hence the error bars.

Returning to the default models for central galaxies
but now including satellites in η(r), we obtain the correla-
tion functions shown in Fig. 7. Satellite galaxies modify the
correlation signal most significantly on scales below about
3Mpc/h where they clearly dominate the galaxy pairs avail-
able (see the inset). The models sth, sma, ert, and est

have similar correlation signals as the correponding central
galaxies (cf. the respective plots for satellite galaxies only
in Fig. 7) and thus cause little change in the total η(r). As
expected, satellite models with strong alignment like sal

boost the signal on small scales while models with less ellip-
tical shapes and weaker alignments (ekn) yield the strongest
suppression of η(r).

5 COMPARISON WITH INTRINSIC

ALIGNMENT OBSERVATIONS

5.1 Early-type samples & method

We now turn to the comparison of two-point statistics of
galaxy shapes from the Millennium Simulation with the re-
sults from observational data sets. To test our models of
early-type galaxy shapes, we will use the most compre-
hensive analysis to date by Joachimi et al. (2011), based
on several early-type SDSS samples. Relying on the shape
measurements by Mandelbaum et al. (2006), Joachimi et al.
(2011) jointly analysed early-type galaxy samples con-
structed from the SDSS Main and Luminous Red Galaxy
(LRG) spectroscopic samples, and the MegaZ-LRG sample
(Collister et al. 2007) which features photometric redshifts
based on SDSS ugriz photometry.

The SDSS Main and MegaZ-LRG samples were each
split into two redshift bins chracterised by a substantially
different mean luminosity. The LRG sample was divided
into three luminosity bins plus a further split in redshift,
so that in total 10 data sets were analysed, with quite uni-
form coverage of redshifts out to z ! 0.7 and rest-frame
magnitudes7 over the range −23 < Mr < −19. High-quality
shape measurements are available for about 74, 000 galaxies
with spectroscopic redshifts and more than 400, 000 galaxies
with photometric redshifts.

The selection criteria of the different samples are sum-
marised in Joachimi et al. (2011). If we applied these di-
rectly to the simulated galaxy catalogues, the analysis
would be subjected to the potentially unreliable colours pro-
duced by semi-analytic galaxy evolution models; see e.g.
Cohn et al. (2007) who found that the red sequence ex-
tracted from the Millennium Simulation has a tilt and larger
spread compared to observations (note that they did not use
a GALFORM-based model though). Hence we refrain from ap-
plying survey selection criteria that involve colours directly
to the simulation-based catalogues. Moreover the luminous
galaxies in the SDSS samples have low number densities and
cover about one order of magnitude larger survey area than
the combined Millennium catalogues, so that the selected
mock samples would be undesirably small.

Hence we chose a different route: after homogenising
the colours of the samples, Joachimi et al. (2011) jointly fit
a three-parameter model, finding excellent agreement be-
tween every data set and the model. It is based on the linear
alignment model (Hirata & Seljak 2004, 2010), heuristically
extended into the non-linear regime (Bridle & King 2007),
and fitted with extra redshift and luminosity dependencies,
which results in the matter-intrinsic power spectrum (for a
formal definition see the appendix of Joachimi et al. 2011)

Pmodel
δI (k, z, L) = −A C1 ρcr

Ωm

D(z)
Pδ(k, z) (11)

×
(

1 + z
1 + z0

)ηother ( L
L0

)β

,

with the matter power spectrum Pδ. The best-fit parameters

7 Note that rest-frame magnitudes of the observational data sets
were determined via the k + e-corrections of Wake et al. (2006),
but using the same values of the relevant cosmological parameters
as those of the Millennium Simulation.

CFHT No detection 
of IA with 

current data 
from 

CFHTLenS

Joachimi et al 2013Hirata & Seljak 2004



WL Systematic 3: Photo-z Errors

SJ et al 2015, in prep

Preliminary

Allowing for a distinct prior in each tomographic 
bin to account for photo-z uncertainties

0.5 1.0 1.5 2.0 2.5

⌦m

0.4

0.8

1.2

1.6

�
8

{�zi} = 0.2

{�zi} = 0.1

{�zi} = 0.05

{�zi} = 0.01

CFHT

Constraints 
consistent 

with fiducial 
distribution 

given Δzi ≤ 0.2

7 additional 
free params



Conclusions
Need to test laws of gravity in multiple ways. 
gravitational lensing and galaxy velocities, may help 
pin down physics of gravity. 

CosmomC pipeline for joint analyses of WL and RSD. 
Applied to CFHTLenS overlapping with BOSS to obtain 
MG constraints and test WL systematics. Preliminary 
constraints seem consistent with standard model. 

Will further apply pipeline to RCSLenS overlapping 
with BOSS and WiggleZ to test MG, and plan to 
explore other interesting physics (massive 
neutrinos).  

Will explore WL systematics in greater detail, 
allowing for multiple systematics simultaneously 
and using joint statistics. Plan to make pipeline and 
data public this year.



Thanks for listening.


