SPHEREX

An All-Sky Spectral Survey

DESIGNED TO EXPLORE:

THE ORIGIN OF THE UNIVERSE THE ORIGIN AND HISTORY OF GALAXIES THE ORIGIN OF WATER IN PLANETARY SYSTEMS

Olivier Doré JPL/Caltech

for the SPHEREx team

SPHEREx: An All-Sky Spectral Survey

Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer

A high throughput, low-resolution near-infrared spectrometer.

O.D., Bock et al., arXiv:1412.4872

Olivier Doré

Three Major Scientific Themes

- Inflation Investigation:
 - ➡ Cosmology with the 3D clustering of galaxies.
 - Survey the z<1.5 Universe to fundamental limits to measure signatures of inflation (non-Gaussianity, primordial power spectrum shape) and dark energy.
 - ▶ Complement Euclid and WFIRST which survey smaller area at z>1.
- Galaxy Evolution Investigation:
 - Measure the extra-galactic background light (EBL) to probe the epoch of reionization (EOR).
- Ice Investigation:
 - Measure how interstellar ices bring water and organic molecules into proto-planetary systems through absorption features in stellar spectra.

SPHEREx Team

Jamie Bock (PI)	Caltech/JPL	Roland de Putter	JPL
Matt Ashby	CfA	Tim Eifler	JPL
Peter Capak	IPAC	Nicolas Flagey	lfA
Asantha Cooray	UC Irvine	Yan Gong	UC Irvine
Olivier Doré (PS)	JPL/Caltech	Elisabeth Krause	Stanford
Chris Hirata	OSU	Daniel Masters	Caltech
Woong Sook Joong	KACI	Phil Mauskopf	ASU
woong-Seob Jeong	NASI	Bertrand Menneson	JPL
Phil Korngut	Caltech	Hien Nguyen	JPL
Dae-Hee Lee	KASI	Karin Öberg	CfA
Gary Melnick	CfA	Anthony Pullen	CMU
Roger Smith	Caltech	Alvise Raccanelli	JHU
Yong-Seon Song	KASI	Volker Tolls	CfA
Stephen Unwin	JPL	Salman Habib	Argonne
Michael Werner	JPL	Katrin Heitmann	Argonne
Michael Zemcov	Caltech	Marco Viero	Stanford

Olivier Doré

A Simple Instrument with One Observing Mode

collecting power for mapping the entire sky

Instrument & Mission Parameters

			N	
Parameter	Value	Parameter	Performance	Margin
Telescope Effective Aperture	20 cm	Spaceoroft		
Pixel Size	6.2" x 6.2"	Spaceciali	Dall DCF 100	N/A
Field of View	2 x (3.5° x 7.0°); dichroic	Science Data	73 Gb/day	97%
Spectrometer	Linear-Variable Filters	Downlink		
Resolving Power and Wavelength Coverage	R=41.5 λ=0.75 - 4.1 μm R=150 λ=4.1 - 4.8 μm	Pointing Stability	2.1" (1o) over 200 s	43%
Arrays	2 x Hawaii-2RG 2.5 μm 2 x Hawaii-2RG 5.3 μm	Pointing Control	22.7" (1o)	164%
Point Source Sensitivity (MEV Performance)	18.5 AB mag (5σ) with 300% margin to req't	Pointing Agility	70° in 116 s (large slews) 8 8' in 6 s (small steps)	29% 233%
Cooling	All-Passive			20070
2.5 µm Array and	80 K with 700% margin	Observatory Mass	1/3.6 kg (MEV)	53%
Optics Temperature	erature on total heat load			0.00/
5.3 µm Array Temperature	55 K with 450% margin on total heat load	Power	171.8 W (MEV)	36%
Pavload Mass	68.1 kg (CBE+31% Cta)	Solar Array Power	224 \N/	NI/A
Payload Power	27.8 W (CBE+30% Ctg)	Output (EOL)	204 11	

Olivier Doré

Quy Nhon, Cosmology after 50 years of CMB - August 2015

nanale

Spectral Coverage and Band Lay-out

Olivier Doré

An Efficient All-Sky Survey in a Step and Repeat Fashion

SPHEREx maps the entire sky with one simple observing mode:

- The spacecraft steps and points the widefield telescope, tiling the sky every 6 months.
- Multiple images produce complete spectra over the full sky.
- The sun-synchronous LEO orbits enable simple passive cooling for NIR detectors.

Very efficient survey: 85% of the time is dedicated to science

Spangelo et al., arXiv:1412.3142

Olivier Doré

Inflation Investigation

Primordial Non-Gaussianity affects Galaxy Clustering - I

$f_{NL} = +1000$

$f_{NL} = 0$

Olivier Doré

Why Studying primordial non-Gaussianity?

	$f_{\rm NL}^{\rm loc} \lesssim 1$	$f_{ m NL}^{ m loc}\gtrsim 1$	
$f_{\rm NL}^{\rm eq,orth} \lesssim 1$	Single-field slow-roll	Multi-field	
$f_{\rm NL}^{\rm eq,orth} \gtrsim 1$	Single-field non-slow-roll	Multi-field	

- Well-defined theory targets exist.
- Planck tells us $f_{NL} \lesssim 5$ (68% C.L.).
- The polarized CMB cosmic variance limit is about ≤ 3 (68% C.L.)
 - Large-scale structure (3D mapping) measurements are needed.

see also Filippo's talks

Testing Inflation with Large Scale Structure: Connecting Hopes with Reality (conveners: O.D., D. Green, Alvarez et al., arXiv:<u>1412.4671</u>)

Olivier Doré

Primordial Non-Gaussianity affects Galaxy Clustering - II

- The effect of primordial non-Gaussianity on galaxy clustering is most important on large scales
 Full sky survey, low spectral resolution sample (de Putter & OD, 14).
- E.g., SDSS QSOs : $-49 < f_{NL}^{loc} < 31$ (95% C.L., Leistedt & Peiris 13)

Olivier Doré

Building a 3-D Galaxy Catalog with SPHEREx

- From our full-sky 97 bands, we extract the spectra of <u>known</u> sources using the full-sky catalogs from <u>PanSTARRS/DES</u> and <u>WISE</u>.
 - → Blending and confusion are easily controlled.
- We compare this spectra to a template library (robust for low redshift sources):
 - For each galaxy, we obtain a redshift but also other properties (stellar mass, dust content...).
- We simulated this process extensively using the COSMOS data-set using the same methodology as the one used for Euclid/WFIRST (Capak et al.).
- A spectra is obtained for any type of galaxy and not only ELGs:
 - → Ideal for multi-tracer studies (McDonald & Seljak 09).
- The power of low-resolution spectroscopy has been demonstrated with PRIMUS (Cool++14), COSMOS (Ilbert+ +09), NMBS (van Dokkum++09).
- The 1.6 µm bump is a well known universal photometric redshift indicator (e.g., Simpson & Eisenhardt 99)

SPHEREx All-Sky Galaxy Density

- Full source extraction and redshit measurement pipeline (Capak & Masters).
- Detect 1.4 billions sources:
 - → 301M of which with 10% z accuracy, 120M with 3% and 9.8M 0.3%.
- Spectra of all types of galaxies, i.e., not only emission line galaxies:
 - Ideally suited for multi-tracer studies.
- The high $\sigma(z)$ sample drives the power-spectrum f_{NL} constraints while the lower $\sigma(z)$ sample drive the bispectrum and other cosmological parameter constraints.

SPHEREx Probes a Large Effective Volume

SPHEREx as a Probe of non-Gaussianity

 $\begin{array}{l} \sigma(f_{\text{NL}}{}^{\text{loc}}) \sim 0.8 \; (3\text{-D Power-spectrum}) \\ \sigma(f_{\text{NL}}{}^{\text{loc}}) \sim 0.2 \; (3\text{-D Bispectrum}) \end{array}$

SPHEREx Cosmological Parameters Constraints

1σ errors	PS	Bispec	PS + Bispec	EUCLID	Current
$f_{ m NL}^{ m loc}$	0.87	0.23	0.20	5.59	5.8
Tilt $n_s (\times 10^{-3})$	2.7	2.3	2.2	2.6	5.4
Running $\alpha_s ~(\times 10^{-3})$	1.3	1.2	0.65	1.1	17
Curvature $\Omega_K (\times 10^{-4})$	9.8	\mathbf{NC}	6.6	7.0	66
Dark Energy FoM = $1/\sqrt{\text{DetCov}}$	202	NC	NC	309	25

Using the power spectrum only and assuming Planck prior

A Very Rich Legacy Catalog

Object	# Sources	Legacy Science	Reference
Detected galaxies	1.4 billion	Properties of distant and heavily obscured galaxies	Simulation based on COSMOS and Pan- STARRS
Galaxies with $\sigma(z)/(1+z) < 0.1$	301 million	Study large scale clustering of galaxies	Simulation based on COSMOS and Pan- STARRS
Galaxies with $\sigma(z)/(1+z) < 0.03$	120 million	Study (H α , H β , CO, OII, OIII, SII, H ₂ O) line and PAH emission by galaxy type. Explore galaxy and AGN life cycle	Simulation based on COSMOS and Pan- STARRS
Galaxies with $\sigma(z)/(1+z) < 0.003$	9.8 million	Cross check of Euclid photo-z. Measure dynamics of groups and map filaments. Cosmological galaxy clustering, BAO, RSD.	Simulation based on COSMOS and Pan- STARRS
QSOs	> 1.5 million	Understand QSO lifecycle, environment, and taxonomy	Ross et al. [81] plus simulations
QSOs at $z > 7$	1.300	Determine if early QSOs exist. Follow-up spectro- scopy probes EOR through $Ly\alpha$ forest	Ross et al. [81] plus simulations
Clusters with ≥ 5 members	25,000	Redshifts for all eRosita clusters. Viral masses and merger dynamics	Geach et al. [82]

SPHEREx Enables a Strong Control of Systematics

- Built in redundancy and long time stability guarantee a good control of systematics.
- In particular, the sources of error coherent on large angular scales (~ 10 deg.), which introduce artificial correlations in the 3-D source catalogs can be controlled:
 - ➡ We estimate all sources of error must be controlled to 0.2% (rms per dex in wavenumber, or 0.002 mag) to measure f_{NL}^{loc}=1.
 - → We evaluate our systematic budget to be 0.160% rms per dex which gives us a margin of 75%.

Systematic	Mitigation	Amplitude	Conversion to $\delta n/n$	Technique	Coherent on large scales?	$\delta n/n~\% m rms/dex$
Galactic extinction	Observe in NIR, template projection	0.007 mag rms before mitigation	$0.92/\mathrm{mag}$	e.g., Pullen & Hirata 2013	Yes	0.064
Noise selection non- uniformity	Inject simulated objects into real data	Template projection 0.2 mag rms (before mitigation)	1.8×10^{-3} /mag	e.g., Huff et al. 2014	Yes	0.036
Noise spectral z non- uniformity	Inject simulated objects into real data	Template projection 0.2 mag rms (before mitigation)	$0.46/\mathrm{mag}$	e.g., Huff et al. 2014	Yes	0.092
Spectral gain errors	Measure flat field, calibrate on spectral standards	≤ 0.25 % pixel-pixel gain	NA	Fixsen et al. 2000	No	NA
Source blending	High resolution Pan-STARRS/ DES/ WISE catalog	Negligible for bright sources	NA	Jouvel et al 2009	No	NA
PSF and Astrometry Error	Stack on 2mass catalogs	$\leq 0.1\%$ flux	1	Zemcov et al. 2013	No	0.10
Cosmic Rays	Flag contaminated pixels	$\leq 1\%$ pixels lost/exposure	NA	Russell et al. 2009	No	NA
Bright Sources	Mask persistent pixels	$\leq 2\%$ pixels lost/exposure	1	Smith et al. 2008	Yes	0.04
Dark Current	Thermal stability	$\leq 10\%$ of statistical error	NA	Zemcov et al. 2013	No	NA

O.D., Bock et al., arXiv:1412.4872

Galaxy Evolution Investigation

Astronomy in the Intensity Mapping Regime

see also Tzu-Ching's and Hien's talks

Probing the Epoch of Reionization with SPHEREx

- SPHEREx orbits enable deep/frequent observations of the celestial poles (great for systematics!)
- SPHEREx wavelength coverage and resolution will enable large-scale measurement of spatial fluctuations in the Extragalactic Background Light (EBL).
- In particular, SPHEREx will monitor/ explain the Intra-Halo Light and its evolution (CIBER, Zemcov++14).
- SPHEREx has the raw sensitivity to probe the expected EOR signal (but separation with low z signal will be challenging).
- The sensitivity in this region will enable deep intensity mapping regimes using multiple lines at all redshift, and maybe Lya at high redshift (see Croft++15)

Olivier Doré

Intensity Mapping 3D Clustering with SPHEREx

- SPHEREx will measure with high SNR the *line luminosity weighted bias* at multiple redshifts with multiple emission lines.
- This bias is directly proportional to the total light production at at a given time and thus proportional to the SFR.
- SPHEREx will map SFR throughout cosmic times, when it increases, peaks and declines.
- SPHEREx <u>might</u> have sensitivity to detect Lya from EOR.

Ice Investigation

SPHEREx Galactic Ice Investigation

- Gas and dust within dense molecular clouds are the reservoirs from which stars and planets assemble:
 - → Within molecular clouds, H₂O ice abundance is $10^2 10^3$ x greater than H₂O gas.
 - In young protoplanetary disks, both models and the limited data presently available suggest that substantial amounts of water and, perhaps other biogenic molecules, exist primarily in ice toward the disk mid-plane and beyond the snow line.

- Point sources will be used as background targets for absorption spectroscopy:
 - ➡ WISE has catalogued > 10⁶ (non-confused) galactic sources at 3.4 µm and 4.6 µm with evidence for extinction due to intervening gas and dust.
 - SPHEREx will measure their spectra with a SNR > 100 per $\Delta\lambda$.

O.D., Bock et al. 2014

SPHEREx Galactic Ice Investigation

- SPHEREx will be a game changer in our efforts to resolve long-standing questions about the amount and evolution of key biogenic molecules (H₂O, CO, CO₂, and CH₃OH) through all phases of star and planet formation by:
 - ➡ Increasing the number of ice absorption spectra by > 1000-fold.
 - → Observing in a spectral region rich in ice features of several key species.
 - Spectral resolution high enough to isolate absorption due to each species; pixels small enough to avoid confusion; high SNR.
- SPHEREx will "trace the history of organic molecules through their cycles of formation, often on the surfaces of dust grains, within molecular clouds to their incorporation in planetary systems." [NWNH]

Conclusions

- SPHEREx has been proposed in Dec.14 as a SMEX mission and selected for Phase-A study in August 15.
- SPHEREx will create the first all sky near-infrared spectroscopic survey:
 - ➡ SPHEREx will create a dataset of lasting legacy.
- SPHEREx offers a simple and very robust design and modus operandi:
 - → It naturally enables a high control of systematics thanks to multiple built-in redundancy.
- SPHEREx key cosmology goals are complementary to CMB based constraints:
 - It allows to probe non-Gaussianity better than any planned experiment (x5 better than Planck/Euclid using the power spectrum and x10 using the bispectrum).
 - → It is sensitive enough to probe regions of well defined theoretical interests.
- SPHEREx is complementary to and has strong synergies with Euclid and WFIRST:
 - → It probes the z<1 Universe while Euclid and WFIRST galaxy clustering studies focus on the higher z Universe.
 - ⇒ SPHEREx will facilitate the control of systematics for Euclid and WFIRST (e.g., photo-z, intrinsic alignment,...) while enabling new scientific opportunities (e.g., exquisite galaxy-galaxy lensing, magnification, ...).
- SPHEREx will also enable other original and powerful studies:
 - The extra-galactic background light from z=0 till the reionization era.
 - The origin of water and biogenic ices in young stellar objects and protoplanetary systems.
- Community support is important!
 - ➡ If you like SPHEREx, please mention it in your papers or talks.

