

Paolo Creminelli, ICTP (Trieste)

B - mode cosmology

Quy Nhon - August 20th 2015

The new era of B-modes

Dust under the carpet

Robust signature

- It is easy to play with scalar perturbations:
 - I. choice of potential
 - 2. many scalars (effects on late Universe)
 - 3. speed of propagation c_S

• It is not easy to play with gravity ! GWs are direct probes of H

Speed of gravity

$$S = \int d^4x \sqrt{-g} \frac{M_{\rm Pl}^2}{2} \Big[R - 2(\dot{H} + 3H^2) + 2\dot{H}g^{00} - (1 - c_T^{-2}(t))(\delta K_{\mu\nu}\delta K^{\mu\nu} - \delta K^2) \Big]$$
$$K_{ij} = \frac{1}{2N} (\dot{h}_{ij} - \nabla_i N_j - \nabla_j N_i)$$
$$S_{\gamma\gamma} = \frac{M_{\rm Pl}^2}{8} \int d^4x a^3 c_T^{-2} \Big[\dot{\gamma}_{ij}^2 - c_T^2 \frac{(\partial_k \gamma_{ij})^2}{a^2} \Big] \longrightarrow \Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

Disformed away

PC, Gleyzes, Noreña, Vernizzi 14

$$\Delta_T^2 = \frac{2}{\pi^2} \frac{H^2}{M_{\rm Pl}^2} \cdot \frac{1}{c_T(t)}$$

- Scale invariance without H \sim const.
- P_T does not measure energy scale

•
$$n_T \neq 2\dot{H}/H^2 < 0$$

Disformed away

Blue tilt using c_T → Stable NEC violation with operator $\delta N \delta K$ PC, Luty, Nicolis, Senatore 06

No loss of generality in taking $c_T = I$ (even multifield or alternatives to inflation)

Exceptions: I. Different symmetry pattern (solid inflation, gauge-flation...)2. GWs not produced as vacuum fluctuations

Spectrum and 3pf corrections

• Corrections to spectrum start with 3 derivative operators:

$$\varepsilon^{ijk}\partial_i\dot{\gamma}_{jl}\dot{\gamma}_{lk}, \qquad \varepsilon^{ijk}\partial_i\partial_m\gamma_{jl}\partial_m\gamma_{lk}$$

$$4\int \mathrm{d}^4x \,\varepsilon^{0ijk}\nabla_i\delta K_{jl}\delta K_{lk} \qquad -4\int \mathrm{d}^4x \,\varepsilon^{ijk}\left(\frac{1}{2}{}^3\Gamma^p_{iq}\partial_j{}^3\Gamma^q_{kp}+\frac{1}{3}{}^3\Gamma^p_{iq}{}^3\Gamma^q_{jr}{}^3\Gamma^r_{kp}\right)$$

Parity violation: different power spectrum for each elicity

$$\langle \gamma_{\vec{k}}^{\pm} \gamma_{\vec{k}'}^{\pm} \rangle = (2\pi)^3 \delta(\vec{k} + \vec{k}') \frac{H^2}{2M_{\rm Pl}^2 k^3} \left(1 \pm \beta \frac{\pi}{2} \frac{H}{\Lambda} \right)$$

For $r \sim 0.1$ we can observe a 50% difference between the two polarizations

Gluscevic, Kamionkowski 10 Ferte, Grain 14

- Not only spectrum, also $\langle\gamma\gamma\gamma\rangle$ cannot be modified at leading order in derivatives

The plane

$$P_{\zeta} = A \cdot k^{-3 + (n_s - 1)}$$

We will measure V, V' and V''

The scalar tilt

Planck: $n_s - 1 = -0.0348 \pm 0.0047$ ($\gtrsim 7\sigma$) It is of order I/N (~ 0.02)

Did we expect that? Can we learn something on r?

Starobinsky, $V \sim V_0(1 - e^{-\phi/M})$ $n_s - 1 = -\frac{2}{N}$

and not in others...

• Hybrid:
$$V = \frac{1}{2}m^2\phi^2 + \frac{1}{4}\lambda(\psi^2 - M^2)^2 + \frac{1}{2}\psi^2\phi^2$$

 $n_s - 1 = 2M_P^2m^2/V_0$ independent of N

Н

V

0.5

Small but not so small because of SUGRA corrections (η-problem)?

Why not $n_s - 1 \sim 0.1$?

• Natural inflation:
$$V = V_0 \left[1 - \cos \left(\frac{\phi}{f} \right) \right]$$

$$n_s - 1 = -a^2 \left(1 + \frac{4}{(2+a^2)e^{a^2N} - 2} \right) \qquad a \equiv \frac{M_P}{f}$$

It scales like I/N only for a << I

Let us take it seriously

PC, Dubovsky, Nacir, Simonović, Trevisan, Villadoro, Zaldarriaga 14

 n_{s} - I scales as I/N in a window (larger than observable one) α

• Running
$$\alpha \quad \frac{d\epsilon^{-1}}{d\log N} - \alpha(N)\epsilon^{-1} = -2N$$
 $\epsilon^{-1}(N) = -2e^{\int_{1}^{N} \frac{d\tilde{N}}{N}\alpha(\tilde{N})} \int_{1}^{N} d\tilde{N}e^{-\int_{1}^{N} \frac{d\tilde{N}}{N}\alpha(\tilde{N})}$
• No lower bound on r
• "Forbidden" region: exp target
• Relevance of tilt
• Running $-\alpha/N_{*}^{2} \simeq -7 \cdot 10^{-4}$
can we measure it ?
• c₅ opens degeneracies
Zavala 14
• C_{5} opens degeneracies
 $Zavala 14$

Scalar Tilt (n_s)

Future: some motivated threshold ?

There are various ways to argue for an interesting threshold:

 $r \sim 2 \times 10^{-3}$

- Typical for exponential approach to a constant (with M_P): $V \propto \exp(-\phi/M_P)$ (Starobinsky, Higgs-inflation, ...)
- I/N argument
- Transplanckian displacement (Lyth bound) assuming increasing r:

$$\frac{\Delta\phi}{M_{\rm P}} = \int \mathrm{d}N\sqrt{\frac{r}{8}}$$
$$r = 8N^{-2} \simeq 2 \times 10^{-3}$$

Future: how far can we get ?

PC, Nacir, Simonović, Trevisan, Zaldarriaga 15

Now that we know better the enemies (dust) we can forecast:

$$S_{\ell,\nu} = (W_{\nu}^{S})^{2} C_{\ell}^{S} = (W_{\nu}^{S})^{2} A_{S} \left(\frac{\ell}{\ell_{S}}\right)^{\alpha_{S}}, \qquad W_{\nu}^{S} = \left(\frac{\nu}{\nu_{S}}\right)^{\beta_{S}},$$
$$D_{\ell,\nu} = (W_{\nu}^{D})^{2} C_{\ell}^{D} = (W_{\nu}^{D})^{2} A_{D} \left(\frac{\ell}{\ell_{D}}\right)^{\alpha_{D}}, \qquad W_{\nu}^{D} = \left(\frac{\nu}{\nu_{D}}\right)^{1+\beta_{D}} \frac{e^{h\nu_{D}/kT} - 1}{e^{h\nu/kT} - 1}$$

Cross-correlation:

$$g\sqrt{S_{\ell,\nu_i}D_{\ell,\nu_j}}$$

Parameter	$\mathbf{Synchrotron}$	Dust (EE, BB)
$A_{72\%} \ [\mu { m K}^2]$	$2.1 imes 10^{-5}$	0.318, 0.169
$A_{53\%} \ [\mu { m K}^2]$	2.1×10^{-5}	0.120, 0.065
$A_{24\%} \ [\mu { m K}^2]$	$2.1 imes 10^{-5}$	0.036, 0.019
$A_{11\%} \ [\mu { m K}^2]$	$4.2 imes 10^{-6}$	0.024, 0.013
$A_{1\%} \ [\mu { m K}^2]$	4.2×10^{-6}	0.012, 0.006
$\nu [{ m GHz}]$	65	353
ℓ	80	80
α	-2.6	-2.42
eta	-2.9	1.59
T [K]	—	19.6

Future: how far can we get ?

- Dust and Sync are comparable at 90 GHz in the cleanest 1%
- Prior: 50% on A_{S} and A_{D} , 10% on β_{S} , 10-50 % on β_{D}
- 10% delensing in exp with sufficient ang resolution: 4.4 \rightarrow 1.4 $\mu K'$

Ground and balloons

	r	Keck/BICEP3	Simons Array	AdvACT	CLASS	SPT-3G
	0.1	$2.2 imes 10^{-2}$	$7.6 imes10^{-3}$	$5.4 imes 10^{-3}$	$6.5 imes 10^{-3}$	$9.0 imes 10^{-3}$
	0.01		$5.0 imes 10^{-3}$	$3.1 imes 10^{-3}$	$3.4 imes 10^{-3}$	$4.2 imes 10^{-3}$
C5	0.001					
	0	$9.1 imes 10^{-3}$	$3.4 imes10^{-3}$	$1.4 imes 10^{-3}$	$9.0 imes 10^{-4}$	$3.7 imes 10^{-3}$
	0.1	$1.9 imes 10^{-2}$	$1.1 imes 10^{-2}$	$7.8 imes 10^{-3}$	$6.0 imes 10^{-3}$	$8.1 imes 10^{-3}$
FG 1%	0.01	$7.8 imes 10^{-3}$	$8.1 imes 10^{-3}$	$4.8 imes 10^{-3}$	$3.5 imes 10^{-3}$	$4.1 imes 10^{-3}$
	0.001					
	0	$6.4 imes 10^{-3}$	$7.8 imes 10^{-3}$	$4.6 imes 10^{-3}$	$3.3 imes 10^{-3}$	$3.7 imes 10^{-3}$

	r	EBEX 10k	Spider
\mathbf{CS}	0.1	$1.5 imes 10^{-2}$	1.8×10^{-2}
	0.01	$7.4 imes10^{-3}$	
	0.001		
	0	$6.4 imes10^{-3}$	$1.3 imes 10^{-2}$

New dust level only changes ~ factor of 2 in reach

Trust foreground model at 1%

Ground: future

Can get to 2×10^{-3} but very challenging

Balloons: future

Beam 5' and 150, 220, 280, 350 GHz

Space

	\mathbf{r}	CMBPol	COrE	LiteBIRD
	0.1	1.2×10^{-3}	$1.3 imes 10^{-3}$	$1.9 imes 10^{-3}$
\mathbf{CS}	0.01	$2.7 imes 10^{-4}$	$3.3 imes 10^{-4}$	$5.9 imes 10^{-4}$
	0.001	1.1×10^{-4}	$1.5 imes 10^{-4}$	$2.5 imes 10^{-4}$
	0	1.4×10^{-5}	2.1×10^{-5}	$8.3 imes 10^{-5}$

 $r \sim 10^{-3} (5\sigma)$ is achievable from space

New dust level only changes ~ factor of 2 in reach

How do we avoid a new BICEP2 roller-coaster?

How can we say it is not some extra dust component?

- Homogeneity over the sky (needs large f_{sky} or more patches)
- Gaussianity
- I-dependence and frequency dependence: fit also for α_{CMB} and β_{CMB}

	r	σ_r	$\sigma_{lpha_{CMB}}$	$\sigma_{eta_{CMB}}$
AdvACT	$\begin{array}{c} 0.1 \\ 0.01 \end{array}$	$\begin{array}{c} 8.8 \times 10^{-3} \\ 6.8 \times 10^{-3} \end{array}$	$\begin{array}{c} 7.8 \times 10^{-2} \\ 2.9 \times 10^{-1} \end{array}$	$\begin{array}{c} 1.3\times10^{-1}\\ 1.1\end{array}$
CLASS	$\begin{array}{c} 0.1 \\ 0.01 \end{array}$	$\begin{array}{c} 1.4\times10^{-2} \\ - \end{array}$	$\begin{array}{c} 7.2\times10^{-2} \\ - \end{array}$	1.1×10^{-1}
Keck/BICEP3	$\begin{array}{c} 0.1 \\ 0.01 \end{array}$	$\begin{array}{c} 2.9\times10^{-2} \\ - \end{array}$	5.5×10^{-1}	4.0×10^{-1} —
Simons Array	$\begin{array}{c} 0.1 \\ 0.01 \end{array}$	$\begin{array}{c} 2.9\times10^{-2} \\ - \end{array}$	$4.0 imes 10^{-1}$	4.0×10^{-1} —
CMBPol	$0.1 \\ 0.01 \\ 0.001$	$\begin{array}{c} 1.3 \times 10^{-3} \\ 3.2 \times 10^{-4} \\ 1.7 \times 10^{-4} \end{array}$	$\begin{array}{c} 1.9\times 10^{-2} \\ 4.0\times 10^{-2} \\ 1.0\times 10^{-1} \end{array}$	$\begin{array}{c} 6.3\times 10^{-3} \\ 2.4\times 10^{-2} \\ 1.0\times 10^{-1} \end{array}$

Bumps

Not clear the level of foregrounds on large scales. Detection of reionization bump is very relevant for discovery:

E.g. COrE (r=0): $2 \times 10^{-5} \rightarrow 2 \times 10^{-4}$ removing first multipoles

The recombination bump if detected would be a strong evidence

	Simons Array	AdvACT	CLASS	GRD	CMBPol
r_{min}	0.08	0.045	0.095	0.005	0.003

Minimum value of r for a 3 σ evidence of the bump

Conclusions

- Robustness of $\Delta_h^2(k) = \frac{2}{\pi^2} \frac{H^2}{M_{\rm pl}^2}$
- I/N scaling: "forbidden region"
- Forecasts: down to 10⁻³ (not changed too much by dust)
- How to avoid a new BICEP roller-coaster?

Backup slides

Experiment	$f_{sky}\left[\% ight]$	ν [GHz]	$ heta_{FWHM}$ [']	$\delta P\left[\mu \mathrm{K}' ight]$
		90	2.2	7.8
AdvACT	50	150	1.3	6.9
		230	0.9	25
		38	90	39
CLASS	70	93	40	13
CLASS	10	148	24	15
		217	18	43
		150	6.6	5.5
FRFX 10k	2	220	4.7	11
EDEA IOK	4	280	3.9	25
		350	3.3	52
	1	95	30	9.0
Keck/BICEP3		150	30	2.3
		220	30	10
	65	95	5.2	13.9
Simons Array		150	3.5	11.4
		220	2.7	30.1
		94	49	17.8
Spider	7.5	150	30	13.6
		280	17	52.6
		95	1	6.0
SPT-3G	6	150	1	3.5
		220	1	6.0
BAL	5	150, 220, 280, 350	5	[1,5]
ULDB	60	150, 220, 280, 350	5	[1,10]
GRD	[1, 50]	100, 150, 220	5	1, 3

Instrumental specifications:

Instrumental	Experiment	$\nu [{ m GHz}]$	$ heta_{FWHM}\left[' ight]$	$\delta P \left[\mu \mathrm{K}' \right]$
specifications:		30	26	19.2
•	CMBPol (EPIC-2m)	45	17	8.3
		70	11	4.2
		100	8	3.2
		150	5	3.1
		220	3.5	4.8
		340	2.3	21.6
		45	23	9.1
		75	14	4.7
		105	10	4.6
		135	7.8	4.6
	COrE	165	6.4	4.6
		195	5.4	4.5
		225	4.7	4.6
		255	4.1	10.5
		285	3.7	17.4
		315	3.3	46.6
		375	2.8	119
		60	32	10.3
		78	58	6.5
	LitoBIRD	100	45	4.7
	LIGDIUD	140	32	3.7
		195	24	3.1
		280	16	3.8