We need a future CMB experiment with spectroscopic capabilities

Fourier transform of temperature anisotropies

Multipole moment $\ell \sim \pi/\theta$

Fluctuations propagate as sound waves until transparency

Peaks are sound wave maxima/mimima at last scattering of photons

Photon mean free path increases as density decreases until fluctuations are damped

Advanced ACTPOL ~ 2017

FUNDAMENTAL PHYSICS CHALLENGES FOR A FUTURE SPACE CMB EXPERIMENT

• Damping tail and m_v

• Primordial B modes

Beyond the standard LCDM model

Recombination epoch

$$\begin{split} \text{Thermalization} \quad & (\gamma, e\text{-}) \text{ by double Compton scattering occurs at} \\ z &> z_{\mu} = 2 x 10^6 (0.0224 / \Omega_B h^2)^{2/5} \quad \text{create photons} \\ e^{+} \gamma &= e^{+} \gamma + \gamma \quad (\text{also bremsstrahlung: } e^{-} + X &= e^{-} + X + \gamma \) \\ t_{\mu} &= 4.10^6 (\Omega_B h^2 / 0.0224)^{-1} (2.10^6 / z)^{9/2} \ \text{s} \end{split}$$

Equilibration (y,e⁻) to Bose-Einstein by Compton scattering (e⁻⁺y --- e⁺y) occurs at $z_{\mu} < z < z_{y} = 2.15 \times 10^{4} (1/\Omega_{B}h^{2})^{1/2}$ conserve photons

results in µ distortion

Heating $z < z_y$: Compton scattering produces y distortionheat photons

Recombination/transparency at z_{LSS}= 1060

Reionization at z~9

Spectral distortions are the next frontier

> 3 order of magnitude improvement is feasible!

From J. Chluba

Advanced ACTpol, SPT-3G Sub-orbital by 2017 **SPIDER** Polar Bear, Simons Array, BICEP3/KECK array, CLASS..... LITEBIRD Space by 2022

low *l* cosmology cosmic variance limited

What is the choice for a future space mission? To B or not to B, or ideally spectrum + B

Guaranteed signals (1)

 $\begin{array}{l} y \sim 10^{-6} \ tSZ \ from \ groups \ at \ z \leq 1 \quad 10^{13} M_{sun} \\ dN/dM \sim M^{-2} \ \& \ T \sim M^{2/3}, \ so \ gain \ over \ clusters \sim M^{4/3} \sim 100 \\ + \ T_{groups} \ from \ relativistic \ correction \end{array}$

few per sq deg means $\delta y/y \sim 0.3$ A problem for early universe y?

PIXIE sensitivity is y~10⁻⁸

Guaranteed signals (2)

Interstellar medium: 1000 x better [CII], N[II] than COBE/FIR

Improved ISM modelling will refine Fermi excess of γ's Galactic Centre region predicted from excess WMAP 'haze' if due to DM annihilations Hooper & Zaharijas 2007

Guaranteed signals (3) Density fluctuation damping gives $\mu=10^{-8}$

complements CMB power spectrum of acoustic peaks

These numbers are integrated over z

Can we do better?

Detecting dark matter decays

CMB spectral distortions open a new window into the early universe Unexploited for 25 years...ripe for improvement by 3 or 4 factors of 10

EARLY ENERGY RELEASE IS A PREDICTION OF THE STANDARD MODEL This gives integrated information that will be complementary & independent, eg for damping already measured at $z\sim1000$, to $z=2.10^6$

+ SOMETHING NEW: exploration of exotic physics Eg annihilating/decaying dark matter, bubble universe collisions, decaying cosmic strings....

+ EXPLORE DECOUPLING OF PRIMEVAL PLASMA AT EPOCH OF 380000 YR Potentially revelatory, eg for directly measuring recombination & for primordial He

QUESTIONS: Is it feasible? Need 10 x PIXIE sensitivity!

Is a space experiment required?

FUTURE SPACE MISSIONS WITH SPECTRAL CAPABILITY

PIXIE (for 2022 launch?) T/S ~2.10⁻⁴ at 1 σ + marginal detection of μ at z~10⁶ and y at z~10³ (~0.01 late y)

cf: LiteBIRD's design goal is $\sim 10^{-3}$ for 2022 launch

PIXIE+

With a modest increase x3 in sensitivity, a significant detection of canonical μ is guaranteed

HYPERPIXIE

- Theorist's dream:
- EXPLORE DECOUPLING at z = 1080
- Potentially revelatory for directly measuring recombination & for primordial He BUT need 30x PIXIE sensitivity!

cam on!