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The Newtonian description of structure growth 
•  The behavior of CDM perturbations is governed by the 

continuity and Euler equations: 

 
• Single-flow approximation:  
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Illustration of the emergence of shell-crossing 



•  In the single-flow approximation, the Euler equation reads 

 
       The velocity field is a gradient. 
 
       It is entirely characterized by its divergence         
                                                                     
    
                                                                   
       In reciprocal space, the system can be rewritten 
compactly with the help of the variable       
                                                                   . 
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The Newtonian description of structure growth 



The Newtonian description of structure growth 
•  The resulting equation is 

•  This compact equation of motion has a formal solution 
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Towards a relativistic generalization of 
cosmological perturbation theory 
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• Discretized phase space at initial time: 
 

 
• Discretized phase space at a later time: 

• One alternative modeling of massive neutrinos beyond the 
linear regime: arXiv 1408.2995 (Blas et al.). 



Towards a relativistic generalization of 
cosmological perturbation theory 

• Our density field is 
 
• By definition,  

 
•  In the single-flow approximation, 
 
 
             After decoupling, the Einstein equations read  
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Towards a relativistic generalization of 
cosmological perturbation theory 

•  The Vlasov equation gives the first equation of motion: 

 
 
•  In a single-flow fluid,  

 
           Combined conservation laws impose 
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Towards a relativistic generalization of 
cosmological perturbation theory 

•  The equations of motion corresponding to subhorizon 
scales are: 

 
   with 
 
   and 
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Towards a relativistic generalization of 
cosmological perturbation theory 

• On subhorizon scales, it is possible to show that the 
comoving momentum field is a gradient. 

         It is entirely characterized by its divergence. 
 
        It can be treated like the velocity field of CDM. 
 
• By analogy with CDM, we introduce for each flow 

and for N flows:  
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Towards a relativistic generalization of 
cosmological perturbation theory 

•  The resulting equations is  

         The relativistic equation is formally the same as the 
equation of motion describing CDM. 
 
         It can be exploited using the standard non-relativistic 
formalism. 
 
•  For more details, see arXiv 1311.5487, 1411.0428 and 

1503.05707 (Dupuy and Bernardeau, published in JCAP). 
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