

A NEW WAY OF DEALING WITH THE NEUTRINO COMPONENT IN COSMOLOGY

Hélène DUPUY

Institut d'Astrophysique de Paris, France

Work realized in collaboration with Francis BERNARDEAU

Rencontres du Vietnam Cosmology fifty years after CMB discovery August, 19th 2015

The Newtonian description of structure growth

 The behavior of CDM perturbations is governed by the continuity and Euler equations:

$$\frac{\partial \delta(\mathbf{x},t)}{\partial t} + \frac{1}{a} [(1+\delta(\mathbf{x},t))u_i(\mathbf{x},t)]_{,i} = 0,$$

$$\frac{\partial u_i(\mathbf{x},t)}{\partial t} + \frac{\dot{a}}{a} u_i(\mathbf{x},t) + \frac{1}{a} u_j(\mathbf{x},t)u_i(\mathbf{x},t)_{,j} = -\frac{1}{a} \Phi(\mathbf{x},t)_{,i} - \frac{(\rho(\mathbf{x},t)\sigma_{ij}(\mathbf{x},t))_{,j}}{a\rho(\mathbf{x},t)}$$

• Single-flow approximation: $\frac{(\rho(\mathbf{x},t)\sigma_{ij}(\mathbf{x},t))_{,j}}{\sigma_{ij}(\mathbf{x},t)}$.

Illustration of the emergence of shell-crossing

The Newtonian description of structure growth

In the single-flow approximation, the Euler equation reads

$$\frac{\mathrm{d}(au_i(x^i,t))}{\mathrm{d}t} = -\frac{\partial\Phi(x^i,t)}{\partial x^i}.$$

The velocity field is a gradient.

It is entirely characterized by its divergence

$$\theta(x^i, t) = \frac{1}{aH} \frac{\partial u_i(x^i, t)}{\partial x^i}$$

In reciprocal space, the system can be rewritten compactly with the help of the variable

$$\Psi_a(\mathbf{k},\eta) \equiv (\delta(\mathbf{k},\eta), -\theta(\mathbf{k},\eta))$$

The Newtonian description of structure growth

The resulting equation is

$$\frac{\partial \Psi_a(\mathbf{k},\eta)}{\partial \eta} + \Omega_a^{\ b}(\eta) \Psi_b(\mathbf{k},\eta) = \gamma_a^{\ bc}(\mathbf{k}_1,\mathbf{k}_2) \Psi_b(\mathbf{k}_1,\eta) \Psi_c(\mathbf{k}_2,\eta),$$

with
$$\gamma_a^{bc}(\mathbf{k}_a, \mathbf{k}_b) = \gamma_a^{cb}(\mathbf{k}_b, \mathbf{k}_a),$$

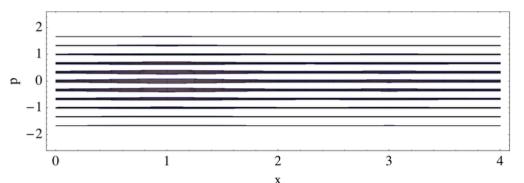
 $\gamma_2^{22}(\mathbf{k}_1, \mathbf{k}_2) = \int \mathbf{d}^3 \mathbf{k}_1 \mathbf{d}^3 \mathbf{k}_2 \delta_{\mathrm{D}}(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2) \frac{|\mathbf{k}_1 + \mathbf{k}_2|^2 (\mathbf{k}_1.\mathbf{k}_2)}{2\mathbf{k}_1^2 \mathbf{k}_2^2},$
 $\gamma_2^{21}(\mathbf{k}_1, \mathbf{k}_2) = \int \mathbf{d}^3 \mathbf{k}_1 \mathbf{d}^3 \mathbf{k}_2 \delta_{\mathrm{D}}(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2) \frac{(\mathbf{k}_1 + \mathbf{k}_2).\mathbf{k}_1}{2\mathbf{k}_1^2}$

and $\gamma = 0$ otherwise.

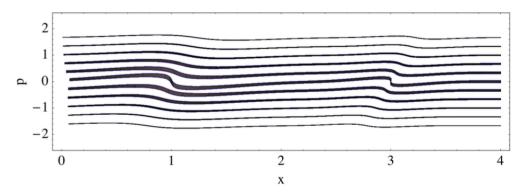
This compact equation of motion has a formal solution

$$\Psi_{a}(\mathbf{k},\eta) = g_{a}^{\ b}(\eta)\Psi_{b}(\mathbf{k},\eta_{0}) + \int_{\eta_{0}}^{\eta} \mathrm{d}\eta' g_{a}^{\ b}(\eta,\eta')\gamma_{b}^{\ cd}(\mathbf{k}_{1},\mathbf{k}_{2})\Psi_{c}(\mathbf{k}_{1},\eta')\Psi_{d}(\mathbf{k}_{2},\eta')$$
initial time Green function

Discretized phase space at initial time:



Discretized phase space at a later time:



• One alternative modeling of massive neutrinos beyond the linear regime: arXiv 1408.2995 (Blas et al.).

• Our density field is $n_c(\eta, x^i) = \int d^3p_i \ f(\eta, x^i, p_i).$

• By definition,
$$T_{\mu\nu}(\eta, x^i) = \int d^3 p_i (-g)^{-1/2} \frac{p_\mu p_\nu}{p^0} f(\eta, x^i, p_i),$$

 $J_\mu(\eta, x^i) = -\int d^3 p_i (-g)^{-1/2} \frac{p_\mu}{p^0} f(\eta, x^i, p_i).$

In the single-flow approximation,

our momentum field

$$f(\eta, x^i, p_i) = n_c(\eta, x^i) \delta_{\mathrm{D}} \left[p_i - P_i(\eta, x^i) \right].$$

After decoupling, the Einstein equations read

$$G_{\mu\nu}(\eta, x^{i}) = 8\pi G \sum_{\text{species, flows}} \frac{P_{\mu}(\eta, x^{i})P_{\nu}(\eta, x^{i})}{(-g)^{1/2}P^{0}(\eta, x^{i})} n_{c}(\eta, x^{i}).$$

The Vlasov equation gives the first equation of motion:

$$\frac{\partial}{\partial \eta} n_c + \frac{\partial}{\partial x^i} \left(\frac{P^i}{P^0} n_c \right) = 0,$$

where $P^i = g^{ij}P_j$ and P^0 is defined so that $P^{\mu}P_{\mu} = -m^2$.

• In a single-flow fluid, $T^{\mu\nu} = -P^{\mu}J^{\nu}$. energy-momentum tensor particle four-current

Combined conservation laws impose

$$P^{\nu}\partial_{\nu}P_{i} = \frac{1}{2}P^{\sigma}P^{\nu}\partial_{i}g_{\sigma\nu}.$$

 The equations of motion corresponding to subhorizon scales are:

$$\begin{aligned} \mathcal{D}_{\eta}n_{c} + \partial_{i}(V_{i}n_{c}) &= 0, \\ \mathcal{D}_{\eta}P_{i} + V_{j}\partial_{j}P_{i} &= \tau_{0}\partial_{i}A + \tau_{j}\partial_{i}B_{j} - \frac{1}{2}\frac{\tau_{j}\tau_{k}}{\tau_{0}}\partial_{i}h_{jk}, \\ \text{initial momentum of the flow} \\ \text{with } \tau_{0} &= -\sqrt{m^{2}a^{2} + \tau_{i}^{2}}, \quad \mathcal{D}_{\eta} &= \frac{\partial}{\partial\eta} - \frac{\tau_{i}}{\tau_{0}}\frac{\partial}{\partial x^{i}} \\ \text{and } V_{i} &= -\frac{P_{i} - \tau_{i}}{\tau_{0}} + \frac{\tau_{i}}{\tau_{0}}\frac{\tau_{j}(P_{j} - \tau_{j})}{(\tau_{0})^{2}}. \end{aligned}$$

peculiar velocity

and

 On subhorizon scales, it is possible to show that the comoving momentum field is a gradient.

It is entirely characterized by its divergence.

It can be treated like the velocity field of CDM.

By analogy with CDM, we introduce for each flow

$$\theta_{\tau_i}(\eta, x^i) = -\frac{1}{ma\mathcal{H}} \frac{\partial P_i(\eta, x^i; \tau_i)}{\partial x^i}, \ \delta_{\tau_i}(\eta, x^i) = -\frac{n_c(\eta, x^i; \tau_i)}{n_c^{(0)}(\tau_i)} - 1$$

and for *N* flows:
$$\Psi_a(\mathbf{k}) = (\delta_{\tau_1}(\mathbf{k}), \theta_{\tau_1}(\mathbf{k}), \dots, \delta_{\tau_n}(\mathbf{k}), \theta_{\tau_n}(\mathbf{k}))^T.$$

The resulting equations is

$$\partial_{\eta}\Psi_{a}(\mathbf{k}) + \Omega_{a}^{b}\Psi_{b}(\mathbf{k}) = \gamma_{a}^{bc}(\mathbf{k}_{1},\mathbf{k}_{2})\Psi_{b}(\mathbf{k}_{1})\Psi_{c}(\mathbf{k}_{2})$$

The relativistic equation is formally the same as the equation of motion describing CDM.

It can be exploited using the standard non-relativistic formalism.

• For more details, see arXiv 1311.5487, 1411.0428 and 1503.05707 (Dupuy and Bernardeau, published in *JCAP*).