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Inflation

• �/H4 � 1: ⌧ ⌧ H�1 and the transition takes place very
rapidly everywhere. Bubbles can percolate, i.e. regions of the
new vacuum of di↵erent bubbles join together and form a
uniform infinite region. However, in this case there is no time
for inflation.

• �/H4 ⌧ 1: ⌧ � H�1 and bubble nucleation is very rare
within a Hubble time. Inflation can take place during many
e-folds. However, in this case bubbles cannot find each other
and percolate.

Old inflation takes place for �/H4 ⌧ 1. However, as recognized
by Guth in his paper, the randomness of bubble formation leads to
unacceptably large inhomogeneity in the post inflationary Universe.
Indeed, once supercooled, the Universe has to be reheated through
release of the latent heat of the phase transition. In his paper it is
implicitly assume that all the latent heat of the bubble is concen-
trated in the walls and that thermalization takes place only when
bubbles undertake many collisions of the walls. As the bubbles do
not meet, this does not happen and the Universe cannot thermalize.

1.3 Slow-roll inflation
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Figure 1.9

The very profound idea of slow-roll (SR) inflation is to replace
the vacuum energy by a scalar field with a very gentle potential.
In such a way the spacetime is approximately dS but inflation has
a clock, and can eventually end when the vacuum energy becomes
too small.

Scalar field: Let us consider a canonical (minimally coupled)
scalar field with actionIn the action (1.45) we have intro-
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Consider a scalar field minimally coupled to gravity
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Scalar fluctuations

Each Fourier mode is a quantum harmonic oscillator with time dependent spring “constant”
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  Discriminative power between different early universe models

Non-Gaussianity contains information about nonlinear couplings during inflation

Non-Gaussian fluctuations
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
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i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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• �/H4 � 1: ⌧ ⌧ H�1 and the transition takes place very
rapidly everywhere. Bubbles can percolate, i.e. regions of the
new vacuum of di↵erent bubbles join together and form a
uniform infinite region. However, in this case there is no time
for inflation.

• �/H4 ⌧ 1: ⌧ � H�1 and bubble nucleation is very rare
within a Hubble time. Inflation can take place during many
e-folds. However, in this case bubbles cannot find each other
and percolate.

Old inflation takes place for �/H4 ⌧ 1. However, as recognized
by Guth in his paper, the randomness of bubble formation leads to
unacceptably large inhomogeneity in the post inflationary Universe.
Indeed, once supercooled, the Universe has to be reheated through
release of the latent heat of the phase transition. In his paper it is
implicitly assume that all the latent heat of the bubble is concen-
trated in the walls and that thermalization takes place only when
bubbles undertake many collisions of the walls. As the bubbles do
not meet, this does not happen and the Universe cannot thermalize.

1.3 Slow-roll inflation

V V

��

dS ⇠ dS

Figure 1.9

The very profound idea of slow-roll (SR) inflation is to replace
the vacuum energy by a scalar field with a very gentle potential.
In such a way the spacetime is approximately dS but inflation has
a clock, and can eventually end when the vacuum energy becomes
too small.

Scalar field: Let us consider a canonical (minimally coupled)
scalar field with actionIn the action (1.45) we have intro-

duced M
Pl

⌘ (8⇡G)�
1
2 . Note that

this is not the real Planck mass be-
cause here there is no ~, as every-
thing is classical.

S =

Z
d4x

p�g


M2

Pl

2
R � 1

2
gµ⌫@µ�@⌫� � V (�)

�
. (1.45)

The stress-energy tensor is given by varying the action with respect
to the metricTo derive Tµ⌫ you must use �

p
�g =

� 1

2

p
�g gµ⌫�gµ⌫ .
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Consider a scalar field minimally coupled to gravity

In a flat FRW background, we have:

Friedmann

Klein-Gordon

Continuity

slow-roll

Scalar Field Dynamics

✏ ⌘ � Ḣ

H2
⌧ 1
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Non-Gaussian predictions
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Even in the absence of primordial non-Gaussianity,                             , the CMB is non-Gaussian! h⇣~k1
⇣~k2

⇣~k3
i = 0

2nd-order effects induce non-Gaussianity: 

• Late time: ISW-lensing;
Goldberg, Spergel, ’99 Detected by Planck!
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Intrinsic nonlinear effects

(Planck ’15)
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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Even in the absence of primordial non-Gaussianity,                             , the CMB is non-Gaussian! h⇣~k1
⇣~k2

⇣~k3
i = 0

2nd-order effects induce non-Gaussianity: 

• Late time: ISW-lensing;
Goldberg, Spergel, ’99 Detected by Planck!

� ⇥ =
�T

T

⇥~k = T (1)(t, k)⇣~k + T (2)(t, k)(⇣ ? ⇣)~k

⇣in

Intrinsic nonlinear effects

(Planck ’15)
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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• At recombination: 2nd-order perturbations in the fluid + GR nonlinearities.

D[�(1)] = 0

D[�(2)] = S[�(1)2]
� = �(1) + �(2) ) ) fNL ⇠ h�(2)�(1)�(1)i

h�(1)�(1)i2
⇠ few

f loc

NL

= 5.7



• Line-of-sight integral:• Boltzmann code:

Bartolo, Matarrese, Riotto ’04, ’06; Bernardeau, Pitrou, Uzan ’08; Pitrou ’08; Bartolo, Riotto ’08; Khatri, Wandelt ’08; Senatore, 
Tassev, Zaldarriaga ’08; Nitta et al. ’09, Boubekeur, Creminelli, D’Amico, Norena, FV ’09, Beneke and Fidler ’10,...

Based on many contributions:

Evolve perturbations up to second order by 
solving Boltzmann and Einstein equations

Gij = 8⇡G
X

I

T (I)
ij&

dfI
d⌘

= CI [fI ] , I = �, ⌫, b,CDM

and previous codes:
Bernardeau, Pitrou, Uzan ’08 (CMBquick2), Khatri, Wandelt ’08 (perturbed rec.), Senatore, Tassev, 
Zaldarriaga ’08 (perturbed recombination), Nitta et al. ’09 (product of first order)

) ⇥(2),�(2), (2), . . .

Compute CMB bispectrum by integrating the 
photon temperature along the line of sight

⇥(2)(⌘0, n̂) =

Z ⌘0

0
d⌘S

(2)(⌘, ~x(⌘), n̂)

h⇥(2)
l1m1

⇥(1)
l2m2

⇥(1)
l3m3

i / h⇣⇣⇣⇣i

Numerical goals

h⇣⇣ih⇣⇣i

• CosmoLib2nd - Z. Huang, FV ‘12

• SONG - Pettinari, Fidler, Chrittenden, Koyama, Wands ‘13

• Su, Lim, Shellard ‘12

New numerical codes:



friend 1

�kL

ClS
LSS

Creminelli, Zaldarriaga ’04

friend 2

Local physics is identical in Hubble patches that differ only by super-horizon modes: two 
observers in different places on LSS will see exactly the same CMB anisotropies (at given T).

long wavelength mode

Single-field inflation: 1 clock, e.g. everything is determined by T.

with Creminelli, Pitrou ’11
Take a long mode



�kL

ClS

The long mode is inside the horizon and I can compare different patches. Will see a modulation of 
the 2-point function due to large scale T:

Transverse rescaling of spatial coords ⇒ rescaling of angles: Cl ! Cl + ⇣(n̂ ·rn̂Cl)

Squeezed limit formula



�kL

ClS

The long mode is inside the horizon and I can compare different patches. Will see a modulation of 
the 2-point function due to large scale T:

Transverse rescaling of spatial coords ⇒ rescaling of angles: Cl ! Cl + ⇣(n̂ ·rn̂Cl)

)
• Squeezed limit formula: 

with Creminelli, Pitrou ’11; Bartolo, Matarrese, Riotto; ’11, Lewis ’12

This relation can be used as consistency check of Boltzmann codes based on a physical limit

bl1l2l3 = CT⇣
l1

1

l2
d(l2Cno ISW

l )

d ln l
,

l1 ⌧ l ⌘ |~l1 �~l2|/2
l1 ⌧ lH ' 110

Squeezed limit formula



• Comparison with the analytic formula:

Code/formula comparison

bl1l2l3 = CT⇣
l1

1

l2
d(l2Cno ISW

l )

d ln l
+O

✓
l2
1

l2

◆

with Huang ’12, ‘13



Cosmic-variance 
limited experiment

Observability and contamination

  Future: use this as a template bl1l2l3 = CT⇣
l1

1

l2
d(l2Cno ISW

l )

d ln l
,

(Planck ’15)
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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Fig. 5. Modal reconstruction for the WMAP-9 bispectrum (left) and the Planck SMICA DR2 T-only bispectrum (right) plotted for
the domain `  450 using identical isosurface levels. Here, we employed the full 2001 eigenmodes for both the Planck analysis at
`max = 2000 and for WMAP-9 analysis at `max = 600, but for comparison purposes we have only used the first 600 eigenmodes
in order to obtain a comparable resolution. The main features in the WMAP-9 bispectrum have counterparts in the Planck version,
revealing an oscillatory pattern in the central region, as well as features on the tetrapyd surface. The WMAP-9 bispectrum has a
much larger noise signal beyond ` = 350 than the more sensitive Planck experiment, leading to residuals in this region.

Table 11. Results for the fNL parameters of the primordial lo-
cal, equilateral, and orthogonal shapes, determined by the KSW
estimator from the SMICA foreground-cleaned map. Both inde-
pendent single-shape results and results with the ISW-lensing
bias subtracted are reported; error bars are 68 % CL. The di↵er-
ence between the last column in this table and the correspond-
ing values in the previous table is that in the second column here
the equilateral and orthogonal shapes have been analysed jointly.
The final reported results of the paper are shown in bold.

fNL(KSW)

Shape and method Independent ISW-lensing subtracted

SMICA (T)
Local . . . . . . . . . 10.2 ± 5.7 2.5 ± 5.7

Equilateral . . . . . . �13 ± 70 �16 ± 70

Orthogonal . . . . . �56 ± 33 �34 ± 33

SMICA (T+E)
Local . . . . . . . . . 6.5 ± 5.0 0.8 ± 5.0

Equilateral . . . . . . 3 ± 43 �4 ± 43

Orthogonal . . . . . �36 ± 21 �26 ± 21

of features evident in the polarization bispectra from the di↵er-
ent foreground-cleaned maps which, although inherently nois-
ier, have qualitative similarities. At a quantitative level, however,
the polarization bispectra modes from di↵erent methods are less
correlated in polarization than in temperature, as we discuss in
Sect. 7.

6.2.2. Binned bispectrum reconstruction

The (reconstructed) binned bispectrum of a given map is a
natural product of the binned bispectrum estimator code, see

Sect. 3.3. To test if any bin has a significant NG signal, we study
the binned bispectrum divided by its expected standard devia-
tion, a quantity for which we will use the symbol Bi1i2i3 . With
the binning used in the estimator, the pixels are dominated by
noise. We thus smooth in three dimensions with a Gaussian ker-
nel of a certain width �bin. To avoid edge e↵ects due to the sharp
boundaries of the domain of definition of the bispectrum, we
renormalize the smoothed bispectrum, so that the pixel values
would be normal-distributed for a Gaussian map.

In Figs. 8 and 9, we show slices of this smoothed binned
signal-to-noise bispectrum Bi1i2i3 with a Gaussian smoothing of
�bin = 2, as a function of `1 and `2. Very red or very blue regions
correspond to a significant NG of any type. The two figures only
di↵er in the value chosen for the `3-bin, which is [518, 548] for
the first figure, and [1291, 1345] for the second. We have de-
fined two cross-bispectra here: BT2E

i1i2i3 ⌘ BTT E
i1i2i3 + BT ET

i1i2i3 + BETT
i1i2i3 ,

and BT E2
i1i2i3 ⌘ BT EE

i1i2i3 + BET E
i1i2i3 + BEET

i1i2i3 . These two cross-bispectra
are then divided by their respective standard deviations (taking
into account the covariance terms) to produce the correspond-
ing BT2E

i1i2i3 and BT E2
i1i2i3 . Those three di↵erent permutations are not

equal a priori due to the condition i1  i2  i3 that is imple-
mented in the code to reduce computations by a factor of six.
However, part of the smoothing procedure is to add the other
five identical copies, so that in the end the plots are symmetric
under interchange of `1 and `2 (and Bi1i2i3 is symmetric under
interchange of all its indices). The grey areas in the plots are re-
gions where the bispectrum is not defined, either because it is
outside of the triangle inequality, or because of the limitation
`Emax = 2000. Given that in both plots `3 is fixed at less than
2000, BT E2

i1i2i3 is not defined if both `1 and `2 are larger than 2000,
while BEEE

i1i2i3 is undefined if either `1 or `2 (or both) are larger
than 2000.

Results are shown for the four component separation meth-
ods SMICA, SEVEM, NILC, and Commander, and for TTT, T2E,
TE2, and EEE. In addition we show on the second line of each
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with Huang ‘13

see also Fidler et al. ’14 & Pettinari et al. ’14 for polarization
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physical effects

Consistency relations of LSS
�L(t, ~x) = �L(t,~0) + ~x · ~r�L(t)|~0+



Assumption: Gaussianity (the long mode does not change the statistics of the short ones)

�L �L = 0

Uniform gravitational field

physical effects

Consistency relations of LSS

Multiplying by a long mode and averaging over the it…
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Uniform gravitational field

physical effects

Consistency relations of LSS
�L(t, ~x) = �L(t,~0) + ~x · ~r�L(t)|~0+
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~v(t)dt

= D�(t)~r�L

Growth factor: �~q(t) = D�(t)�0(~q)
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Consistency relations for LSS

• Hold nonlinearly in the short modes, after shell crossing, including baryonic 
physics, bias and everything!

• Vanishes for equal-time correlators

Since                                   there is no divergent contribution

 Well known in Perturbation Theory but here derivation is much more general

 Solely a consequence of the Equivalence Principle and non-Gaussianity

Cancellation very robust: • True also in redshift space

• Non-perturbative in the long mode
with Creminelli, Gleyzes, Simonovic ’14

h�~q(t) �~k1
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�

t1 = t2

~k1 + ~k2 = q

~k1 = �~k + ~q/2 , ~k2 = ~k + ~q/2



Consistency relations for LSS
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D�(t1)

D�(t)
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~k1 = �~k + ~q/2 , ~k2 = ~k + ~q/2

• Hold nonlinearly in the short modes, after shell crossing, including baryonic 
physics, bias and everything!

• Vanishes for equal-time correlators

Since                                   there is no divergent contribution

 Well known in Perturbation Theory but here derivation is much more general

 Solely a consequence of the Equivalence Principle and non-Gaussianity

Cancellation very robust: • True also in redshift space

• Non-perturbative in the long mode
with Creminelli, Gleyzes, Simonovic ’14

t1 = t2

~k1 + ~k2 = q



Hard to measure

• “Measure” in simulations as a test

• Look for a violation at equal times: divergence for 

 Local non-Gaussianity: scale dependent bias

• Difficult to measure a short scale correlation over long times

q ! 0
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iq!0 ⇠ ✏ · k
q
P�(q)P�(k)

 Violation of Equivalence Principle: fifth force, modified gravity
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Baryon acoustic oscillations
Baldauf, Mirbabayi, Simonovic, Zaldarriaga ‘15

A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ⇠(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⌘ d lnD/d ln a ⇠⌦0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ⌦M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su�ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field  within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by � . Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f( · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by � . Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000

•  Equal-time correlators:

Vanish for smooth Pg(k) over long mode q (no effect of the long mode on relative 
displacement). But consider finite q

•  Effects of modes comparable to BAO separation 
on modes of order of BAO width

`BAO

•   Useful for BAO scale reconstruction: argument depends only on EP and 
Gaussianity (beyond perturbation theory).

Spread of BAO width under effect of long mode

⇠ 1

`BAOq

h�~q �g~k1
�g~k2

i0 ' P�(q)
~q · ~k
q2

[Pg(k1)� Pg(k2)]

h�~q �g~k1
�g~k2

i0 ' 2P�(q)
k~q · ~rk̂

`BAOq2
Pw
g (k)



Conclusions

   CMB bispectrum from Gaussianity: CMB is affected by intrinsic second order 
effects at recombination. Firmly established by 2nd-order Boltzmann code and 
analytic calculation in the squeezed limit.


   Consistency relations of LSS: EP and Gaussianity fixes correlation functions in 
the squeezed limit. Can be used to test these assumptions. In our universe they 
are the main source of broadening of the baryon acoustic peaks.




