Aspects of non-Gaussian and...
Gaussian primordial perturbations

Filippo Vernizzi
IPhT, CEA Saclay and CERN

ICISE, Quy Nhon - August 19, 2015



Outline

Primordial non-Gaussianity

See also A. Tolley (next talk), E. Silverstein (Thursday) and
B. Racine (on Friday) !

Cosmic Microwave Background
bispectrum from “primordial Gaussianity”

\.

Consistency relations of
Large Scale Structure




Outline

Primordial non-Gaussianity

See also A. Tolley (next talk), E. Silverstein (Thursday) and
B. Racine (on Friday) !

Cosmic Microwave Background
bispectrum from “primordial Gaussianity”

Consistency relations of
Large Scale Structure




lider

. Our cosmic Cco

Planck 2015




Planck 2015: our cosmic collider
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All there is for Gaussian fluctuations
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Scalar fluctuations
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Scalar fluctuations
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* Inside Hubble radius: vacuum I.C. « Qutside Hubble radius: fluctuations freeze-in



Non-Gaussian fluctuatior
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Non-Gaussianity contains information about nonlinear couplings during inflation
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Discriminative power between different early universe models



Non-Gaussian fluctuatior
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2 Discriminative power between different early universe models
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Single-field predictions
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Single-field predictions
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The long mode redefines the background (rescaling of the momenta):
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Single-field predictions

N L s
2 Squeezed limit: k1l — —
Maldacena ’02 ks
k‘2
<CE1CE2CE3> — [—(TLS - 1) + O (k_§> P(kl)P(kQ) 9 kl < k2 ~ k3
2

The long mode redefines the background (rescaling of the momenta):

gijdatde’ = a?(1)eXr a7 = 2()di® = k=ke "

kg(xa) = kgeSE(@a) V\
- >

Red spectrum ns-1<0



Single-field predictions
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Robust prediction of all single-field models!



Non-Gaussian predictions
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2 Single-field slow-roll:
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Single-field attractor solution Only gravitational interactions



Non-Gaussian predictions
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fﬁ% 2> 1: large self-interactions are important (strong coupling regime)



Non-Gaussian predictions
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Non-Gaussian predictions
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2 Multi-field models:
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Examples: multi-field inflation, curvaton, variable decay rate, etc...

£ > 1: extra fields, local correlation between long and short modes
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Non-Gaussian predictions
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INntrinsic nonlinear effects

Even in the absence of primordial non-Gaussianity, <C121 CE2 CE3> = 0, the CMB is non-Gaussian!
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O =TW(t, k)¢ + TP (t,k)(¢*0)r
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* At recombination: 2"9-order perturbations in the fluid + GR nonlinearities.
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Numerical goals

New numerical codes:
» CosmolLib2" - 7. Huang, FV ‘12

« SONG - Pettinari, Fidler, Chrittenden, Koyama, Wands ‘13

« Su, Lim, Shellard ‘12

 Boltzmann code:

Evolve perturbations up to second order by
solving Boltzmann and Einstein equations

a1 =Ctlfr], I=~,v,b,CDM

dn
& Gf,;j = SWGZTZ(]I)
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Based on many contributions:

e Line-of-sight integral:
Compute CMB bispectrum by integrating the
photon temperature along the line of sight

1o
0@ (ng, n) =/ dnS® (n, &(n), n)
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Bartolo, Matarrese, Riotto '04, '06; Bernardeau, Pitrou, Uzan ’'08; Pitrou ’08; Bartolo, Riotto '08; Khatri, Wandelt '08; Senatore,
Tassev, Zaldarriaga '08; Nitta et al. 09, Boubekeur, Creminelli, D’Amico, Norena, FV 09, Beneke and Fidler ’10,...

and previous codes:

Bernardeau, Pitrou, Uzan '08 (CMBquick?2), Khatri, Wandelt 08 (perturbed rec.), Senatore, Tassey,
Zaldarriaga ’08 (perturbed recombination), Nitta et al. 09 (product of first order)



Take a |Oﬂg mode Creminelli, Zaldarriaga *04

with Creminelli, Pitrou '11

Single-field inflation: 1 clock, e.g. everything is determined by T.

friend 1 friend 2

kr
v

long wavelength mode

Local physics is identical in Hubble patches that differ only by super-horizon modes: two
observers in different places on LSS will see exactly the same CMB anisotropies (at given T).



Squeezed limit formula

The long mode is inside the horizon and | can compare different patches. Will see a modulation of
the 2-point function due to large scale T:

Transverse rescaling of spatial coords = rescaling of angles: C; — C; + ((n - V; ()



Squeezed limit formula

The long mode is inside the horizon and | can compare different patches. Will see a modulation of
the 2-point function due to large scale T:

Transverse rescaling of spatial coords = rescaling of angles: C; — C; + ((n - V; ()

e Squeezed limit formula:
T¢ 1 d(l20lno ISW) L <l = ‘ll — 12’/2
i ]2 dlnl ’ [1 <lyg ~ 110

= b1 151, =

with Creminelli, Pitrou '11; Bartolo, Matarrese, Riotto; ’11, Lewis 12

This relation can be used as consistency check of Boltzmann codes based on a physical limit



Code/formula comparison

with Huang '12, ‘13

Planck params. without reion.
[, =6, varying 1, =1,

I
N
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= = squeezed-limit approx.
- Sachs-Wolfe
Doppler

— Total \J U
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time shift
vector
tensor

» Comparison with the analytic formula:
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Observab|l|ty and contamination

1.5F T Cosmlc-vanance --------------- 7

N)gec - . limited experiment K with Huang ‘13

(Planck *15) NL(KSW)

Shape and method  ISW-lensing subtracted

SMICA (7)
Local ......... 25 = 5.7
Equilateral . . . . .. -16 =+ 70
Orthogonal . . ... -34 =+ 33
SMICA (T+E)
. . : s Local ......... 0.8 =+ 5.0
Planck params W|thout reion. Equilateral . . . . .. 4 + 43
: ' ' ' ' ’ Orthogonal . . ... -26 <+ 21
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[

see also Fidler et al. ’'14 & Pettinari et al. ’14 for polarization

max

T¢ 1 d(lQCnO ISW)
L2 dlnl

Future: use this as a template biy1515 = O,
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Consistency relations of LSS

Oy (t, &) = Pr(t,0) + f-[ﬁ@L(t)\(}k physical effects

Uniform gravitational field




Consistency relations of LSS

Oy (t, ) =b(t,0)+ 2 6@L(t)]6—l— physical effects

Uniform gravitational field

displacement

(00, 8) - 3(tn, &0)|@1) = (3(t1,F1) 0t ) |

Assumption: Gaussianity (the long mode does not change the statistics of the short ones)

Multiplying by a long mode and averaging over the it...



Consistency relations of LSS

Oy (t, ) =b(t,0)+ 2 6@L(t)]6—l— physical effects

Uniform gravitational field
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Kehagias, Riotto, ‘13; Peloso, Pietroni ’13; with Creminelli, Norena, Simonovic ’13; Valageas ’13



Consistency relations for LSS
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Hold nonlinearly in the short modes, after shell crossing, including baryonic
physics, bias and everything!

Vanishes for equal-time correlators ¢1 = {2

Since k1 + ko =g  thereis no divergent contribution

e True also in redshift space

Cancellation very robust: |
e Non-perturbative in the long mode

with Creminelli, Gleyzes, Simonovic 14

4 Well known in Perturbation Theory but here derivation is much more general

4 Solely a consequence of the Equivalence Principle and non-Gaussianity



Consistency relations for LSS
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Hard to measure

7k [Ds(ts) Ds(t1)
d7(t) 02 (t1)0% (t2)) ~ Ps(q,t P, (ki,t1) — P,(ko,t
Bat6) 32, (0032 (1)) = Pata. 0L |2 i, 1) = D 1)
e Difficult to measure a short scale correlation over long times
s A
v << Cf An
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* “Measure” in simulations as a test
» Look for a violation at equal times: divergence for ¢ — 0
4 Local non-Gaussianity: scale dependent bias
fll\?f Dalal, Doré, Huterer,
<5675E1 5E2>q—>0 ~ Ps(q)Ps(k) Shirokov ‘07

H2q2
4 Violation of Equivalence Principle: fifth force, modified gravity

k ith Creminelli, Gleyzes
Sq0r O ~ € = Ps(q)Ps(k W , Gleyzes,
{ )40 p (q)Ps (k)

97 k1 ko Hui, Simonovic '14



Baryon acoustic oscillations

Baldauf, Mirbabayi, Simonovic, Zaldarriaga ‘15

—

* Equal-time correlators: <5q»5%1 5%2>' ~ P5(Q)% [Pg(kl) - Pg(kQ)]

Vanish for smooth Pg4(k) over long mode g (no effect of the long mode on relative
displacement). But consider finite g

» Effects of modes comparable to BAO separation

on modes of order of BAO width 1
YRV 9" Vi pw
<5q 5E1 5E2> — 2P5(Q) gBAOqz Pg (k)

Spread of BAO width under effect of long mode

e Useful for BAO scale reconstruction: argument depends only on EP and
Gaussianity (beyond perturbation theory).



Conclusions

*¥ CMB bispectrum from Gaussianity: CMB is affected by intrinsic second order
effects at recombination. Firmly established by 2nd-order Boltzmann code and
analytic calculation in the squeezed limit.

¥ Consistency relations of LSS: EP and Gaussianity fixes correlation functions in
the squeezed limit. Can be used to test these assumptions. In our universe they
are the main source of broadening of the baryon acoustic peaks.






