

What will we learn with eBOSS?

Julian Bautista ^{University of Utah} on behalf of the eBOSS/SDSS-IV collaboration

> Rencontres du Vietnam Cosmology 2015

Outline

- Current status of spectroscopic survey measurements
- The survey strategy and forecasts
- A pilot survey: SEQUELS
- Astrophysics with eBOSS

Current status of

LSS measurements

Hubble Diagram from BAO measurements

Aubourg et al. 2014

Redshift-space distortions

Peculiar velocities $\nabla \cdot \vec{v}_p = -\frac{H(z)}{1+z} f \delta_m$

> $f \propto \Omega_m^{\gamma}$ In GR: γ = 0.55

Is GR consistent with anisotropic clustering measurements?

More cosmology

Neutrino masses

Primordial Non-Gaussianity

Zhao et al. 2013, Beutler et al. 2014 Palanque-Delabrouille et al. 2014, 2015

Ross et al. 2013

The survey

Strategy and forecasts

SDSS-IV

- Fourth generation of the Sloan
 Survey
- 2.5m telescope @ Apache Point: wide-field, multiplex
 spectroscopy, wide wavelength coverage, R = λ /Δλ ~ 2500
- eBOSS will use 50% of dark time
- Observing and data management similar to BOSS

Tracers

Emission Line Galaxies (ELG)

0.7 < z < 1.1

200k

 $1500 \, deg^2$

Forecasts

DAO

DCD

		DAO	KSD
Quasars	Zeff	σ_{D_V}/D_V	$\sigma_{f\sigma_8}/f\sigma_8$
- Clustering	1.4	1.8%	3.2%
- Lyα forest (+BOSS)	2.4	1.4%	

Luminous Red
Galaxies (LRG)0.70.8%2.6%

Emission Line
Galaxies (ELG)0.852.0%3.8%

Selecting targets

Imaging information available

SDSS (optical)

WISE (IR)

SCUSS (U-band)

PTF (Variability) Pan-STARRS

DES

Selecting Quasars

- Solution Extreme deconvolution XDQSOz (Bovy et al 2011, 2012) $P_{QSO}(z > 0.9) > 0.2$
- WISE 3.4 and 5.6 µm bands improve selection
- Requirement 90 deg⁻² at
 0.9 < z < 2.2 for clustering
- ✤ 1.8% on BAO

Selecting Lya Quasars

- Intrinsic variability of quasars observed with PTF and Pan-STARRS over years
- 20 deg⁻² additional quasar targets for Lyα-forest (z>2.1)
- 1.4% on BAO
 (including BOSS forests)

Tangeting CROBSWILL BOSSS WISE

- Bolometric SED of LRGs peaks at 1.5µm
- LRGs at z ~ 1 are brighter in IR than in optical compared to stars
- Sequirement of 40 LRGs/ deg² at 0.6 < z < 0.9</p>
- 1.0% on BAO (including fraction of BOSS CMASS)

Selecting ELGs

- Star formation rate is higher at z ~ 1, so galaxies are bluer and contain strong emission lines
- SCUSS U-band + WISE improves the selection (Raichoor et al 2015)
- Deeper photometry from DES in some regions
- Requirement of 190 000 ELGs at 0.7<z<1.1
- ▶ 2.0% on BAO

Common requirements

Less than 15% tracer density fluctuations over footprint to avoid systematics (Ross et al. 2012b)

1.5

4.5

3.0

2.0

40

Common requirements

- Get accurate and precise redshifts!
- Redshift estimate accuracy < 300 km/s</p>
- Less than 1% of catastrophic redshifts
- Targeting efficiency depends on type of tracer

A pilot survey SEQUELS

Sloan Extended Quasar, ELG and LRG Survey

- \sim 466 deg² of the footprint
- Tests of target selection algorithms
- Efficiency of automatic redshift estimates

Half of this data is public at **sdss.org** The other half will be public in July 2016

Redshift distribution

Targeting Efficiency

QSOs: 71% (clustering) 16% (new Lyα forest)

LRGs: 68-72%

ELGs: 71-78% (depending on selection algorithm)

All* tracers are satisfying BAO requirements! *LRGs need some BOSS galaxies

Work in progress!

- Improved selection algorithms
- Robust data-reduction especially for fainter galaxies
- More confident spectral classification and redshift estimation
- And keep observing !

Astrophysics

eBOSS will be soon the largest quasar survey ever

- Quasar luminosity function for fainter quasars
- Bias and halo occupation
- Black-hole mass estimates
- Composite spectra and modelling
- Metal absorbers in the IGM

Galaxies

- Small-scale clustering and halo properties
 Strong lensing
- Cross-correlations with Lyα forest or CMB Scluster of galaxies

Conclusions

Conclusions

Conclusions

- eBOSS first year is done!
- Pilot survey show targeting algorithms and data reductions are performing well
- First clustering measurements and data release next summer
- BAO forecasts for 6 years: 1.8%
 (QSO), 1.4%(Lyα), 0.8%
 (LRGs) and 2.0% (ELGs)
- An enormous potential for new discoveries in astrophysics of quasars and galaxies

Thank you

Dark energy

Other forecasts

Parameter	Constraint from	Constraint from	Constraint from
	CMB	BOSS and CMB	BOSS, eBOSS, and CMB
$\Omega_M h^2$	0.008	0.0028	0.0017
w_0	0.52	0.17	0.15
Wa	1.4	0.67	0.48
γ	30.	0.13	0.10
$\sum m_{ u}$	0.81 eV	0.29 eV	0.16 eV
n_s	0.0045	0.0026	0.0022

Some eBOSS spectra

