Outline		Gamma-ray bursts	LIGO/Virgo	Prospects	
	0000000	000000	0000	0000	

Gravitational Waves and Gamma-Ray Bursts

Michał Wąs for the LIGO and Virgo collaborations

LAPP/IN2P3 - Annecy

Michał Wąs (G1400802)

Outline		Gamma-ray bursts	LIGO/Virgo		
	000000	000000	0000	0000	

Outline Gravitational waves

Properties Detectors Gamma-ray bursts **Relevant astrophysics GW** emission LIGO/Virgo Searches Results Prospects Summary

Outline	Gravitational waves	Gamma-ray bursts	LIGO/Virgo	Prospects	
	• 000 000				

$GR \rightarrow Gravitational Waves$

● Gravitational Waves (GW) → usually seen as linear limit of GR

 $g_{\mu
u}=\eta_{\mu
u}+h_{\mu
u}, \quad h_{\mu
u}\ll 1 \quad \eta_{\mu
u}- ext{ flat metric}$

Einstein's equations $\Rightarrow \Box h_{\mu\nu} = 0$

- Waves propagating at speed of light
- 2 transverse polarizations

$$h_{\mu\nu} = h_+ A_{\mu\nu} + h_\times B_{\mu\nu}$$

Effect on free test masses

Outline	Gravitational waves ○●○○○○○	Gamma-ray bursts 000000	LIGO/Virgo 0000	Prospects 0000	

Gravitational sources – quadrupolar approximation

Approximation: far field + slow moving source

• Dominant source: mass distribution quadrupolar moment

Outline	Gravitational waves	Gamma-ray bursts	LIGO/Virgo	Prospects	
	000000				

Gravitational wave source: luminosity

Luminosity (radiated power) in GW

- Good sources are:
 - asymmetric $\rightarrow \epsilon = \frac{I_{xx} I_{yy}}{I} \sim 1$
 - compact \rightarrow size R is near the Schwartzschild radius R_s
 - relativistic $v \sim c$

Example of terrestrial production

- ► 10 ton steel bar → not compact
- ▶ rotating at 50 Hz, size 1 m \rightarrow non relativistic
- \Rightarrow GW amplitude $h \sim 10^{-35}$, flux $\sim 10^{-31}$ W m⁻²
- ⇒ Astrophysical sources
 - neutron star merger at 10 Mpc \rightarrow (volume covers a few dozen galaxies)
 - GW amplitude $h \sim 10^{-21}$, flux $\sim 10^{-3}$ W m⁻² \rightarrow possible
 - NB: Earth radius $\times 10^{-21} \sim$ atomic nucleus radius

0000000	000000	0000	0000	

Indirect observation of GWs

- Neutron star binary $\rightarrow \mathcal{L}_{GW}$
- ⇒ Energy loss of the binary neutron star system
 - Orbital period measured through Doppler effects on radio pulses
 - Follows GR with $\sim 10^{-3}$ precision

binary pulsar PSR1913+16

Hulse-Taylor Nobel Prize 1993

Observation of primordial GW imprint in the CMB with BICEP?

Outline	Gravitational waves	Gamma-ray bursts	LIGO/Virgo	Prospects	
	0000000	000000	0000	0000	

Direct observation principles

Look at the relative variation of two orthogonal lengths ⇒ Michelson interferometer basic optical layout of a GW detector

• Suspended mirrors (horizontally free masses)

- GW same everywhere but propagation delayed
 ⇒ Reject spurious non-Gaussian glitches
- 3 omnidirectional detectors
 - \rightarrow sky localization by triangulation

antenna response

Most sensitive for GW in [50, 500] Hz band

(Abadie et al., 2012c)

Gamma-ray burst models

- Long GRBs
- ⇒ Massive rapidly spinning star collapse and explosion
 - Short GRBs
- Coalescence of a neutron star and a compact object
- Both cases: asymmetric, compact, relativistic ⇒ good GW source
- $\bullet\,$ typical GRB distance $\sim 10\,\text{Gpc}$

Potential lessons from GW-GRB detection

- Confirm the binary coalescence model for short GRBs
- Constraints on the jet opening angle
- Precise measurement of GW speed, $\Delta v/c \sim 10^{-16}$
- Measure of Hubble's constant independent of cosmic ladder

Outline	Gamma-ray bursts	LIGO/Virgo	Prospects	
	○●○○○○			

GW emission - coalescence scenario

Binary system of two compact objects (NSNS or NSBH)

- Lose energy by GW radiation
- $\bullet\,$ GW emission enters sensitive band $(\gtrsim50\,\text{Hz})<50\,\text{s}$ before coalescence
- NS needs to be disrupted $\rightarrow M_{BH} < 20 \,M_{\odot}$ (Duez, 2009) \rightarrow negligible GW S/N at merger, ringdown

Michał Wąs (G1400802)

Imp (((0))) VIRGD LSC 🔊 🛍

Outline		Gamma-ray bursts	LIGO/Virgo	Prospects	
	0000000	00000	0000	0000	

GW emission - coalescence scenario

- $\bullet\,$ GRB central engine formed in \lesssim 1 s
- γ -ray emission delayed by $\lesssim T_{90} \sim$ 2 s
- \Rightarrow coalescence time [-5, 1] s prior to GRB observation
 - GRB observed → rotation axis points at observer
- ⇒ GW well known and circularly polarized up to inclination of 60° → loose constraint (jet opening angle $\lesssim 30^{\circ}$)

- Magnetar central engine / Proto neutron star
 - ► bar mode instability in the star (Shibata et al., 2003)
 - neutron star core fragmentation (Davies et al., 2002; Kobayashi and Mészáros, 2003)
- Black hole and accretion disk
 - Disk fragmentation (Piro and Pfahl, 2007)
 - Disk precession (Romero et al., 2010)
- \Rightarrow circular polarization along rotation axis
- \Rightarrow Emitted GW energy $\lesssim 10^{-2} M_{\odot}c^2 (10^{52} \text{ erg})$
 - Other emission mechanism but no prospects for extra-galactic reach
 - Out of frequency band (Neutrino, normal modes, ...)
 - Too small amplitude (Core bounce, SASI, ...)

Outline	Gamma-ray bursts	LIGO/Virgo	Prospects	
	00000			

Long time scale emission

- Plateau and flares in GRB afterglows
- Long lived EM emission from the central engine (Rowlinson et al., 2013)
- Long lived GW emission $\sim 10^3$ s?
 - Secular bar mode instability in neutron star (Corsi and Mészáros, 2009)
 - Fallback accretion on neutron star (Piro and Thrane, 2012)
- \Rightarrow Long $\sim 10^3$ s poorly modeled transients
 - Methods are in developments (Aasi et al., 2013)

- $2005 2010 \rightarrow 2$ years of data
- Network of four GW detectors
 - LIGO Hanford 1 and 2
 - LIGO Livingston
 - Virgo, Italy
- GRBs observed by γ-ray satellites
 Gamma-ray burst Coordinates Network
 + Inter Planetary Network
- 508 GRBs with good data from at least two GW detectors
- includes 69 "short" GRBs lenient classification
 - ► T₉₀ < 4 s
 - or short spike at light curve start (extended emission sGRB)
 - Completeness more important than purity

Outline		Gamma-ray bursts	LIGO/Virgo		
	000000	000000	0000	0000	

Two complementary searches – (Aasi et al., 2014)

- Broad in scope covers most possibilities
 - "burst" searching method any signal shapes
 - $\blacktriangleright\,$ Limited to 60 500 Hz band, \lesssim 1 s duration
 - Assumes circular polarization
 - ► Loose time coincidence between γ -rays and GW $T_{GW} T_{\gamma} \in [-600, \max(T_{90}, 60)]$ s
- Focused on short GRBs binary coalesence
 - Inspiral waveform templates, NS-NS and NS-BH
 - ► Tight time coincidence between γ -rays and GW inspiral end time $T_{\text{GW, coalescene}} T_{\gamma} \in [-5, 1]$ s
 - \blacktriangleright More sensitive to inspiral signals by factor ~ 2
- Both combine data coherently from \geq 2 detectors

17/24

2014 August 6 18/24

		ia-ray bursts ElGO/	rviigo riospeci	
0000000	0000	000 000	• 0000	

GRB070201 / GRB051103

Significant previous non detections

- Short GRBs,
 - GRB070201 sky location overlap with M31, (Andromeda 770 kpc)
 - GRB051103 sky location overlap with M81 (~ 3.6 Mpc)
- no GW found
 - ⇒ Binary coalescence in M31 excluded at >99% confidence level (Abbott et al., 2008)
 - ⇒ Binary coalescence in M81 excluded at 98% confidence level (Abadie et al., 2012a)
- Compatible with
 - Neutron star quake in M31/M81 (Soft gamma-repeater)
 - Coalescence in galaxy behind M31/M81

GRB051103 error box (Hurley et al., 2010)

- Reaching design sensitivity will take a few years
- KAGRA (LCGT, Japan) started construction → 5 detectors ~ 2020 Michał Wąs (G1400802)

20/24

- Prospects for advanced detectors
 - ► Don't miss nearby GRB → full sky/time coverage
 - ×10 sensitivity

 \times 2 number of GRBs $\Leftarrow \gamma$ -ray satellite coverage crucial

- long GRBs, possible if optimistic GW emission
- short GRBs, quite possible, especially if significant NS-BH fraction expect ~ 1 detection per year

Michał Wąs (G1400802)

Outline	Gamma-ray bursts	LIGO/Virgo	Prospects	
			0000	

All potential GWs sources $z \lesssim 0.1$: $H_0 = c \frac{z}{D_1}$

- A/Ψ(t; (1 + z)M) GW shape sets absolute amplitude of the waveform
- *D_L* luminosity distance
 ⇒ Measure *D_L* from GW amplitude
- *ι* binary inclination angle degenerate with luminosity distance (polarization is hard to measure)
- z redshift degenerate with the mass of the binary

Outline	Gamma-ray bursts	LIGO/Virgo	Prospects	
			0000	

$$\begin{bmatrix} h_+(t) \\ h_\times(t) \end{bmatrix} = \frac{A(t; (1+z)\mathcal{M})}{D_L} \begin{bmatrix} (1+\cos^2 \iota)\cos(\Psi(t); (1+z)\mathcal{M}) \\ 2\cos\iota\sin(\Psi(t); (1+z)\mathcal{M}) \end{bmatrix}$$

Several approaches

 \Rightarrow Measure D_L from GW amplitude

Outline		Gamma-ray bursts	LIGO/Virgo	Prospects	
	000000	000000	0000	0000	

$$\begin{bmatrix} h_+(t) \\ h_\times(t) \end{bmatrix} = \frac{A(t; (1+z)\mathcal{M})}{D_L} \begin{bmatrix} (1+\cos^2 \iota)\cos(\Psi(t); (1+z)\mathcal{M}) \\ 2\cos\iota\sin(\Psi(t); (1+z)\mathcal{M}) \end{bmatrix}$$

- \Rightarrow Measure D_L from GW amplitude
 - Combine GW and GRB observation (Nissanke et al., 2010)
 - redshift given by EM observations
 - γ-ray observation means binary close to face-on
 - \rightarrow helps breaking the D_L vs inclination degeneracy

Outline		Gamma-ray bursts	LIGO/Virgo	Prospects	
	000000	000000	0000	0000	

$$\begin{bmatrix} h_{+}(t) \\ h_{\times}(t) \end{bmatrix} = \frac{A(t; (1+z)\mathcal{M})}{D_{L}} \begin{bmatrix} (1+\cos^{2}\iota)\cos(\Psi(t); (1+z)\mathcal{M}) \\ 2\cos\iota\sin(\Psi(t); (1+z)\mathcal{M}) \end{bmatrix}$$

- \Rightarrow Measure D_L from GW amplitude
 - Combine GW and GRB observation (Nissanke et al., 2010)
 - Use GW information alone Assume \mathcal{M} (Taylor et al., 2012)
 - ► Assume *M* known binary neutron star system
 - \rightarrow Measure redshift from GW shape
 - Dozens of events per year
 - \rightarrow helps breaking the D_L vs inclination degeneracy

Outline		Gamma-ray bursts	LIGO/Virgo	Prospects	
	000000	000000	0000	0000	

$$\begin{bmatrix} h_+(t) \\ h_\times(t) \end{bmatrix} = \frac{A(t; (1+z)\mathcal{M})}{D_L} \begin{bmatrix} (1+\cos^2 \iota)\cos(\Psi(t); (1+z)\mathcal{M}) \\ 2\cos\iota\sin(\Psi(t); (1+z)\mathcal{M}) \end{bmatrix}$$

- \Rightarrow Measure D_L from GW amplitude
 - Combine GW and GRB observation (Nissanke et al., 2010)
 - Use GW information alone Assume \mathcal{M} (Taylor et al., 2012)
 - Combine GW and galaxy catalogs (Del Pozzo, 2012)
 - Measure redshift statistically from catalog
 - \rightarrow All potential host within large 3D wedge of the universe
 - Dozens of events per year
 - \rightarrow helps breaking the D_L vs inclination degeneracy

Outline	Gamma-ray bursts	LIGO/Virgo	Prospects	
			0000	

$$\begin{bmatrix} h_+(t) \\ h_\times(t) \end{bmatrix} = \frac{A(t; (1+z)\mathcal{M})}{D_L} \begin{bmatrix} (1+\cos^2 \iota)\cos(\Psi(t); (1+z)\mathcal{M}) \\ 2\cos\iota\sin(\Psi(t); (1+z)\mathcal{M}) \end{bmatrix}$$

- \Rightarrow Measure D_L from GW amplitude
 - Combine GW and GRB observation (Nissanke et al., 2010)
 - Use GW information alone Assume \mathcal{M} (Taylor et al., 2012)
 - Combine GW and galaxy catalogs (Del Pozzo, 2012)
 - In all cases $\sim 10\%$ precision on H_0
 - Measurement independent of cosmic ladder

Outline	Gamma-ray bursts	LIGO/Virgo	Prospects	Summary

Summary

- Long and short GRBs progenitors may produce large amounts of GWs
- Some relevant exclusions: GRB070201, GRB051103
- $\bullet\,$ Good prospects for first detection with advanced detectors $\gtrsim 2015\,$
- Joint GW- γ observation will determine the nature of GRB progenitors
- Full sky γ -ray coverage essential in 2015-2020

10% of sky
20% of sky
60% of sky
most of the sky?

References

Aasi, J. et al. (2013). Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Phys. Rev. D, 88:122004.

Aasi, J. et al. (2014). Search for gravitational waves associated with gamma-ray bursts detected by the interplanetary network. Phys. Rev. Lett., 113:011102.

Abadie, J. et al. (2012a). Implications for the Origin Of GRB 051103 From LIGO Observations. Astrophys. J., 755:2.

Abadie, J. et al. (2012b). Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science run 2 and 3. Astrophys. J., 760:12.

Abadie, J. et al. (2012c). Sensitivity achieved by the LIGO and Virgo gravitational wave detectors during LIGO's sixth and Virgo's second and third science runs. LIGO-T1100338. arXiv:1203.2674.

Abbott, B. P. et al. (2008). Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J, 681:1419.

Corsi, A. and Mészáros, P. (2009). GRB afterglow plateaus and gravitational waves: Multi-messenger signature of a millisecond magnetar? Astrophys. J., 702:1171.

Davies, M. B., King, A., Rosswog, S., and Wynn, G. (2002). Gamma-ray bursts, supernova kicks, and gravitational radiation. Astrophys. J. Lett., 579:L63.

Del Pozzo, W. (2012). Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers. Phys. Rev. D, 86:043011.

Duez, M. D. (2009). Numerical relativity confronts compact neutron star binaries: a review and status report. Class. Quantum Grav., 27:114002.

Hurley, H. et al. (2010). A new analysis of the short-duration, hard-spectrum GRB 051103, a possible extragalactic soft gamma repeater giant flare. Mon. Not. R. Astron. Soc., 403:342.

Kobayashi, S. and Mészáros, P. (2003). Gravitational radiation from gamma-ray burst progenitors. Astrophys. J., 589:861.

Mazets, E. P. et al. (2008). A giant flare from a soft gamma repeater in the andromeda galaxy (m31). Astrophys. J., 680:545.

Nissanke, S. et al. (2010). Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys. J., 725:496.

Piro, A. L. and Pfahl, E. (2007). Fragmentation of collapsar disks and the production of gravitational waves. Astrophys. J., 658:1173.

Piro, A. L. and Thrane, E. (2012). Gravitational waves from fallback accretion onto neutron stars. Astrophys. J., 761:63.

Romero, G. E., Reynoso, M. M., and Christiansen, H. R. (2010). Gravitational radiation from precessing accretion disks in gamma-ray bursts. Astron. Astrophys., 524:A4.

Rowlinson, A. et al. (2013). Signatures of magnetar central engines in short grb light curves. Mon. Not. Roy. Astron. Soc., 430:1061.

Shibata, M., Karino, S., and Eriguchi, Y. (2003). Dynamical bar-mode instability of differentially rotating stars: effects of equations of state and velocity profiles. Mon. Not. R. Astron. Soc., 343:619.

Taylor, S. R., Gair, J. R., and Mandel, I. (2012). Cosmology using advanced gravitational-wave detectors alone. Phys. Rev. D, 85:023535.

Wąs, M., Sutton, P. J., Jones, G., and Leonor, I. (2012). Performance of externally triggered gravitational-wave burst search with X-Pipeline. Phys. Rev. D, 86:022003.

GRB triggered GW burst search

- Known position and time
 - ► Reduced time → reduced background
 - ► Position → simplify coherent network analysis
 - · time delays between detectors constrained by sky location box
 - * $\sim 20\%$ sensitivity improvement (Wąs et al., 2012)
 - \Rightarrow Better sensitivity by a factor \sim 2 wrt to all-sky/all-time search
- On-source data
 - Search for potential GW events
- Off-source data, time slides
 - Measurement of event background distribution
- Repeated independently for each GRB

