Xth RENCONTRES DU VIETNAM Very High Energy Phenomena in the Universe

Quy Nhon, 3-9 August 2014

Ultrahigh-Energy Cosmic Rays and Neutrinos from Gamma-Ray Bursts

Soebur Razzaque

Fourth Vietnam School of Particle Physics

Nha Trang 1997-1998

Patrick Aurenche

Fourth Vietnam School of Particle Physics

Nha Trang 1997-1998

AUGER Collab. 2010

GRBs as sources of UHECRs: Waxman 1995; Vietri 1995

Energy injection rate in UHECRs from data

 $\dot{E}_{\rm UHECR} \approx 10^{44} \, {\rm erg} \, {\rm Mpc}^{-3} \, {\rm yr}^{-1}$ Need baryon-loading factor > ~ 50

Energy injection rate in UHECRs from data

 $\dot{E}_{\rm UHECR} \approx 10^{44} \, {\rm erg} \, {\rm Mpc}^{-3} \, {\rm yr}^{-1}$ Need baryon-loading factor > ~ 50

How many GRBs within the GZK volume (100 Mpc)?

→ Depends on the Inter-Galactic Magnetic Field (IGMF)

$$\Delta t_{\rm CR} \sim 3.2 \times 10^4 Z^2 \left(\frac{B_{\rm IG}}{1 \, {\rm nG}}\right)^2 \left(\frac{E_{\rm CR}}{60 \, {\rm EeV}}\right)^{-2} \left(\frac{\lambda_{\rm IG}}{1 \, {\rm Mpc}}\right)^{3/2} \, {\rm yr}$$

$$\rightarrow N_{\rm GRB} \sim \frac{20 \, {\rm GRB}}{{\rm Gpc}^3 {\rm yr}} \cdot V_{\rm GZK} \Delta t_{\rm CR} \sim 3 \times 10^3$$

Energy injection rate in UHECRs from data

 $\dot{E}_{\rm UHECR} \approx 10^{44} \, {\rm erg} \, {
m Mpc}^{-3} \, {
m yr}^{-1}$ Need baryon-loading factor > ~ 50

How many GRBs within the GZK volume (100 Mpc)?

→ Depends on the Inter-Galactic Magnetic Field (IGMF)

$$\Delta t_{\rm CR} \sim 3.2 \times 10^4 Z^2 \left(\frac{B_{\rm IG}}{1 \, {\rm nG}}\right)^2 \left(\frac{E_{\rm CR}}{60 \, {\rm EeV}}\right)^{-2} \left(\frac{\lambda_{\rm IG}}{1 \, {\rm Mpc}}\right)^{3/2} \, {\rm yr}$$

$$\rightarrow N_{\rm GRB} \sim \frac{20 \, {\rm GRB}}{{\rm Gpc}^3 {\rm yr}} \cdot V_{\rm GZK} \Delta t_{\rm CR} \sim 3 \times 10^3$$

A fraction (~1/200) of these GRBs have their jets pointing to us

beaming angle correction

When UHECRs are made in GRBs?

Fireball shock model of long-duration GRBs

Rees, Meszaros, Shemi, Piran, Daigne, Mochkovitch, ...

When UHECRs are made in GRBs?

Fireball shock model of long-duration GRBs

Rees, Meszaros, Shemi, Piran, Daigne, Mochkovitz, ...

Chain of logic

fraction <1
Energy density for magnetic field:
$$u_B' \equiv \frac{B'^2}{8\pi} = \epsilon_B u_p'$$

Magnetic field:

Typical values for prompt gamma rays

$$B' \approx \sqrt{\frac{2\epsilon_B L_{\gamma}}{\epsilon_e r_{\rm sh}^2 \Gamma_b^2 c}} \sim 8 \times 10^4 \sqrt{\frac{\epsilon_B}{\epsilon_e}} \left(\frac{L_{\gamma}}{10^{51} \, {\rm erg/s}}\right)^{1/2} \left(\frac{r_{\rm sh}}{10^{13} \, {\rm cm}}\right)^{-1} \left(\frac{\Gamma_b}{316}\right)^{-1} \, {\rm G}$$

Chain of logic

Magnetic field:

Energy density for magnetic field: $u_B'\equiv \frac{B'^2}{8\pi}=\epsilon_B u_p'$

Typical values for prompt gamma rays

fraction <1

$$B' \approx \sqrt{\frac{2\epsilon_B L_{\gamma}}{\epsilon_e r_{\rm sh}^2 \Gamma_b^2 c}} \sim 8 \times 10^4 \sqrt{\frac{\epsilon_B}{\epsilon_e}} \left(\frac{L_{\gamma}}{10^{51}\,{\rm erg/s}}\right)^{1/2} \left(\frac{r_{\rm sh}}{10^{13}\,{\rm cm}}\right)^{-1} \left(\frac{\Gamma_b}{316}\right)^{-1} \,{\rm G}$$

Maximum CR energy: $E_{\rm max} \sim Z e B' r_{\rm sh}$

$$E_{\rm max} \sim 2 \times 10^{20} \sqrt{\frac{\epsilon_B}{\epsilon_e}} \left(\frac{L_{\gamma}}{10^{51}\,{\rm erg/s}}\right)^{1/2} \left(\frac{\Gamma_b}{316}\right)^{-1} ~{\rm eV}$$

External forward shock - Blast wave

Relativistic jet running into surrounding environment

Deceleration time scale from total energy in blast wave equal to kinetic energy

External forward shock - Blast wave

Relativistic jet running into surrounding environment

Deceleration time scale from total energy in blast wave equal to kinetic energy

Constant density medium

$$t_{\text{dec},i} \approx 33.3 \,(1+z) \left(\frac{n}{1 \,\text{cm}^3}\right)^{-1/3} \left(\frac{\Gamma_b}{316}\right)^{-8/3} \left(\frac{E_k}{10^{55} \,\text{erg}}\right)^{1/3} \,\text{s}$$

Wind medium, R⁻² density

$$t_{\mathrm{dec},w} \approx 1.5 \, \frac{1+z}{A_{\star}} \left(\frac{\Gamma_b}{316}\right)^{-4} \left(\frac{E_k}{10^{55}\,\mathrm{erg}}\right) \, \mathrm{s}$$

External forward shock - Blast wave

Relativistic jet running into surrounding environment

Deceleration time scale from total energy in blast wave equal to kinetic energy

Constant density medium

$$t_{\text{dec},i} \approx 33.3 \,(1+z) \left(\frac{n}{1 \,\text{cm}^3}\right)^{-1/3} \left(\frac{\Gamma_b}{316}\right)^{-8/3} \left(\frac{E_k}{10^{55} \,\text{erg}}\right)^{1/3} \,\text{s}$$

Wind medium, R⁻² density

$$t_{\mathrm{dec},w} \approx 1.5 \, \frac{1+z}{A_{\star}} \left(\frac{\Gamma_b}{316}\right)^{-4} \left(\frac{E_k}{10^{55}\,\mathrm{erg}}\right) \,\,\mathrm{s}$$

Blandford & McKee 1976

Self-similar evolution of the blast wave

Bulk Lorentz factor

$$\begin{split} \Gamma_{ad,i}(t) &= \Gamma_0 (t_{\text{dec},i}/4t)^{3/8}, \qquad \Gamma_{ad,w}(t) = \Gamma_0 (t_{\text{dec},w}/4t)^{1/4}, \\ \Gamma_{ra,i}(t) &= \Gamma_0 (t_{\text{dec},i}/7t)^{3/7}, \qquad \Gamma_{ra,w}(t) = \Gamma_0 (t_{\text{dec},w}/7t)^{1/3}, \end{split}$$

Adiabatic blast wave in constant density

$$\Gamma_{\mathrm{ad},i} \approx 124 \, (1+z)^{3/8} \left(\frac{n}{1 \,\mathrm{cm}^3}\right)^{-1/8} \left(\frac{E_k}{10^{55} \,\mathrm{erg}}\right)^{1/8} \left(\frac{t}{100 \,\mathrm{s}}\right)^{-3/8}$$
Blast wave radius: $r_{\mathrm{sh}} \approx \frac{4 \times 10^{17}}{(1+z)^{1/4}} \left(\frac{n}{1 \,\mathrm{cm}^3}\right)^{-1/4} \left(\frac{E_k}{10^{55} \,\mathrm{erg}}\right)^{1/4} \left(\frac{t}{100 \,\mathrm{s}}\right)^{1/4} \,\mathrm{cm}^{1/4}$

Adiabatic blast wave in constant density

$$\Gamma_{\mathrm{ad},i} \approx 124 \, (1+z)^{3/8} \left(\frac{n}{1 \,\mathrm{cm}^3}\right)^{-1/8} \left(\frac{E_k}{10^{55} \,\mathrm{erg}}\right)^{1/8} \left(\frac{t}{100 \,\mathrm{s}}\right)^{-3/8}$$
Blast wave radius: $r_{\mathrm{sh}} \approx \frac{4 \times 10^{17}}{(1+z)^{1/4}} \left(\frac{n}{1 \,\mathrm{cm}^3}\right)^{-1/4} \left(\frac{E_k}{10^{55} \,\mathrm{erg}}\right)^{1/4} \left(\frac{t}{100 \,\mathrm{s}}\right)^{1/4} \,\mathrm{cm}$

Magnetic energy from shock energy: $B'^2/8\pi = \epsilon_B (4\pi r_{\rm sh}^2 n m_p c^2 \Gamma_{{\rm ad},i}^2)$

$$B' \approx 15(1+z)^{3/8} \left(\frac{\epsilon_B}{0.1}\right)^{1/2} \left(\frac{n}{1\,\mathrm{cm}^3}\right)^{3/8} \left(\frac{E_k}{10^{55}\,\mathrm{erg}}\right)^{1/8} \left(\frac{t}{100\,\mathrm{s}}\right)^{-3/8} \,\mathrm{G}$$

Adiabatic blast wave in constant density

$$\begin{split} \Gamma_{\mathrm{ad},i} &\approx 124 \, (1+z)^{3/8} \left(\frac{n}{1 \, \mathrm{cm}^3}\right)^{-1/8} \left(\frac{E_k}{10^{55} \, \mathrm{erg}}\right)^{1/8} \left(\frac{t}{100 \, \mathrm{s}}\right)^{-3/8} \\ \\ \mathbf{Blast wave radius:} \ r_{\mathrm{sh}} &\approx \frac{4 \times 10^{17}}{(1+z)^{1/4}} \left(\frac{n}{1 \, \mathrm{cm}^3}\right)^{-1/4} \left(\frac{E_k}{10^{55} \, \mathrm{erg}}\right)^{1/4} \left(\frac{t}{100 \, \mathrm{s}}\right)^{1/4} \, \mathrm{cm} \end{split}$$

Magnetic energy from shock energy: $B'^2/8\pi = \epsilon_B (4\pi r_{\rm sh}^2 n m_p c^2 \Gamma_{{\rm ad},i}^2)$

$$B' \approx 15(1+z)^{3/8} \left(\frac{\epsilon_B}{0.1}\right)^{1/2} \left(\frac{n}{1\,\mathrm{cm}^3}\right)^{3/8} \left(\frac{E_k}{10^{55}\,\mathrm{erg}}\right)^{1/8} \left(\frac{t}{100\,\mathrm{s}}\right)^{-3/8} \,\mathrm{G}$$

Maximum CR energy: $E_{\rm max} \sim ZeB'r_{\rm sh}$

$$E_{\rm max} \sim 2 \times 10^{20} \left(\frac{n}{1\,{\rm cm}^3}\right)^{1/8} \left(\frac{\epsilon_B}{0.1}\right)^{1/2} \left(\frac{E_k}{10^{55}\,{\rm erg}}\right)^{3/8} \left(\frac{t}{100\,{\rm s}}\right)^{-1/8} ~{\rm eV}$$

Minimum CR energy: $E_{\min} \sim m_p c^2 \Gamma^2 \sim 10^{14} - 10^{15} \,\mathrm{eV}$ early on

fraction < 1

Total cosmic-ray energy:
$$\mathcal{E}_{CR} \approx \epsilon_p \frac{4}{3} \pi r_{sh}^3 m_p c^2 \Gamma^2 = \frac{1}{2} \epsilon_p E_k$$

Energy extraction rate by cosmic rays is quite slow

$$\Gamma_{\mathrm{ad},i} \approx 1 \, (1+z)^{3/8} \left(\frac{n}{1 \, \mathrm{cm}^3}\right)^{-1/8} \left(\frac{E_k}{10^{55} \, \mathrm{erg}}\right)^{1/8} \left(\frac{t}{1 \, \mathrm{yr}}\right)^{-3/8}$$

Minimum CR energy: $E_{\min} \sim m_p c^2 \Gamma^2 \sim 10^{14} - 10^{15} \,\mathrm{eV}$ early on

fraction < 1

Total cosmic-ray energy:
$$\mathcal{E}_{CR} \approx \epsilon_p \frac{4}{3} \pi r_{sh}^3 m_p c^2 \Gamma^2 = \frac{1}{2} \epsilon_p E_k$$

Energy extraction rate by cosmic rays is quite slow

$$\Gamma_{\mathrm{ad},i} \approx 1 \, (1+z)^{3/8} \left(\frac{n}{1 \, \mathrm{cm}^3}\right)^{-1/8} \left(\frac{E_k}{10^{55} \, \mathrm{erg}}\right)^{1/8} \left(\frac{t}{1 \, \mathrm{yr}}\right)^{-3/8}$$

$$\dot{E}_{\rm CR} \sim 10^{55} \ \frac{\rm erg}{\rm GRB} \cdot \frac{20 \, {\rm GRB}}{\rm Gpc^3 \, yr} \eta_{\rm bol} \epsilon_p \sim 2 \times 10^{47} \eta_{\rm bol} \epsilon_p \ \frac{\rm erg}{\rm Mpc^3 \, yr}$$

High Energy Neutrinos from GRBs

Interaction channels for cosmic rays in the vicinity

Pion decay chain

Energy for each neutrino flavor ~ 5% of CR energy

Neutrinos from Internal Shocks

Calculation after Waxman & Bahcall

IceCube Collab.

Neutrinos from Internal Shocks

Calculation after Waxman & Bahcall

IceCube Collab.

Yet no detection!

IceCube limit on prompt neutrinos

IceCube Collab.

IceCube limit on prompt neutrinos

IceCube Collab.

What's going on?

- UHECRs are not accelerated in internal shocks
- Neutrinos are not produced significantly

Number density of target photons for p-gamma interaction in IS

$$n_{\gamma}^{\prime}\approx\frac{L_{\gamma}/\epsilon_{e}}{4\pi r_{\rm sh}^{2}c\Gamma_{b}\varepsilon_{\rm pk}}\propto\Gamma_{b}^{-5}$$

p-gamma interaction opacity/efficiency; $au_{p\gamma} \sim n_\gamma' \sigma_{p\gamma} r_{
m sh}' \propto \Gamma_b^{-4}$

Number density of target photons for p-gamma interaction in IS

$$n_{\gamma}^{\prime} \approx \frac{L_{\gamma}/\epsilon_e}{4\pi r_{\rm sh}^2 c \Gamma_b \varepsilon_{\rm pk}} \propto \Gamma_b^{-5}$$

p-gamma interaction opacity/efficiency; $au_{p\gamma} \sim n_\gamma' \sigma_{p\gamma} r_{
m sh}' \propto \Gamma_b^{-4}$

Large bulk Lorentz factor **Extremely low efficiency**

Typical
$$au_{p\gamma} \sim 0.2 (\Gamma_b/316)^{-4}$$

Independently from gamma-ray data

Constraint on the bulk Lorentz factor from gamma-gamma pair production opacity from >10 GeV photons

Gehrels & Razzaque 2013

Fermi-LAT Collab. 2013

Long-lived neutrino flux from interaction of UHECR and afterglow photon

Razzaque 2013

Long-lived neutrino flux from interaction of UHECR and afterglow photon

Diffuse flux

Razzaque & Yang, in prep.

10 year events in IceCube

Preliminary

Razzaque & Yang, in prep.

3 year events in IceCube

Preliminary

$Log_{10} E(GeV)$	5.5-7	7-8.5	8.5-10
GRB	0.38	1.00	0.07
	(0.13)	(2.25)	(0.24)
	[0.09]	[1.63]	[0.21]
Atm.	3.97×10^{-7}	$2.78 imes10^{-9}$	2.32×10^{-12}
	(1.36×10^{-6})	(5.86×10^{-8})	(1.10×10^{-10})
	[]	[]	[]
GZK_{Fe}	3.31×10^{-3}	$2.95 imes10^{-3}$	2.7×10^{-3}
	(3.58×10^{-6})	(4.68×10^{-5})	(1.8×10^{-4})
	$[8.94 \times 10^{-4}]$	$[5.05 \times 10^{-3}]$	$[9.7 \times 10^{-3}]$
GZK_p	1.45	0.36	0.25
	(1.32×10^{-3})	(0.02)	(0.07)
	[0.31]	[0.54]	[0.92]

Razzaque & Yang, in prep.

Future IceCube HE Extension

Slide from Garry Hill in NEUTRINO 2014, Boston

Summary and Outlook

- Acceleration of UHECRs in GRB jets is possible
 - Both internal shocks and external shocks
 - Requires large baryon loading / kinetic energy
- UHE neutrinos are expected to be produced at the acceleration sites
 - IceCube limit on prompt ~100 TeV-10's of PeV flux is consistent with large jet bulk Lorentz factor
 - Long-lived PeV-EeV neutrinos from external shocks may be detectable with IceCube and future experiments

Backup Slides

High-Energy Neutrinos from GRBs

Razzaque, Meszaros & Waxman 2003

Razzaque, Meszaros & Waxman 2003

Jet buried inside collapsing star

Prospects for HE neutrino detection

Projected v events for IceCube			
Flux model	ν_{μ}	\mathbf{v}_{e}	
Precursor I (He)	-	-	
Precursor II (H)	4.1	1.1	
Burst/prompt	3.2	0.3	
Afterglow (ISM)	-	-	
Afterglow (wind)	0.1	-	
Supranova (>0.1 d)	13	2.4	

 $E_{\rm v}$ > TeV, no oscillation

- Expected prompt muon neutrinos, after oscillation ~1.6
- Current non-detection of neutrinos from GRB 130427A (z=0.34) is consistent with prediction

GRB 030329/SN 2003dh Typical long duration GRB with bright SN $\sim 10^{51}$ ergs/s luminosity at redshift z = 0.17

Neutrino flux models: Dai & Lu 2000 (afterglow wind) Razzaque, Meszaros & Waxman, PRL 2003 (supranova) Razzaque, Meszaros & Waxman, PRD 2003 (precursor) Waxman & Bahcall 2000 (afterglow ISM) Waxman & Bahcall 1997 (burst/prompt)

Heavy Nuclei in GRBs

Nuclei from

stellar core 1000 1000 O nuclei Fe nuclei t_{syn} 100 100 tsyn 10 10 time s time s t_{dyn} t_{dyn} t_{dis} 0.1 0.1 t_{dis} **Γ = 316** t_{acc} 0.01 $R = 10^{13} \text{ cm}$ I_{acc} 0.001 10¹⁷ 1022 10¹⁹ 1021 1018 1020 1018 1019 1020 1021 1022 10⁵ 10^{4} t_{syn} O nuclei Fe nuclei t_{syn} pi 10^{4} 1000 t_{pi} ر ۱000ء a 100 time 100 $t_{\rm dis}$ t_{dis} 10 Γ = 1000 t_{dyn} t_{dyn} $R = 10^{14} \text{ cm}$ tacc t_{acc} 1 1017 1018 1019 1020 1021 1022 10^{17} 1018 10¹⁹ 1020 1021 1022 E eV E eV

Wang, Razzaque, Meszaros, ApJ 2008