Searches for Neutrinos and Cosmic-Ray Sources at Ultra-High Energies

Olivier Deligny, IPN Orsay, CNRS/IN2P3 & Université Paris Sud

Xth Rencontres du Vietnam Quy Nhon, 3-9 August 2014

Ultra-High Energy Cosmic Rays

<u>Contemporary questions:</u>

- Gal/Xgal transition ?
- Origin of the ankle ?
- Origin of the UHE suppression ?
- Composition at UHE ?
- Sources ?

 \rightarrow UHECRs + CMB \Rightarrow cosmogenic neutrinos

Implications for CRs from a «multi-messenger approach» ?

Cosmogenic Neutrinos

- $<E_{P}>\sim 1.6 \ 10^{20} eV/(E_{Y}/10^{-3} eV)$ with $<E_{Y}>\sim 7 \ 10^{-4} eV$ for CMB photons at z=0
- ➡ Production through decay of pions:

$$p + \gamma_{2.7K} \rightarrow \Delta(1232) \rightarrow n + \pi^{+} \gamma_{\mu}^{\mu^{+}} + \nu_{\mu} \rightarrow 3\nu, \text{ Ev~5\% Ep}$$

$$\gamma + \gamma \rightarrow 2\gamma, \text{ Ev~10\% Ep}$$

➡ Production through decay of neutrons:

 $n \rightarrow p e \bar{\nu}_e$ \implies Ev~0,03% Ep

- Cosmological evolutions
 - ➡ Wide peak through pion decay around 1 EeV
 - \blacktriangleright Wide peak through neutron decay around few PeV

• Relationship between
the two fluxes:
$$\begin{bmatrix} E_{\nu}^{2} \frac{\mathrm{d}\Phi_{\bar{\nu}_{e}}}{\mathrm{d}E} \end{bmatrix}_{(E_{\bar{\nu}_{e}}=6\times10^{15} \text{ eV})}^{n-dec,CMB} \simeq 6 \times 10^{-3} \begin{bmatrix} E_{\nu}^{2} \frac{\mathrm{d}\Phi_{\nu\mu}}{\mathrm{d}E} \end{bmatrix}_{(E_{\nu\mu}=10^{18} \text{ eV})}^{n-dec,CMB} \simeq 2 \times 10^{-3} \begin{bmatrix} E_{\nu}^{2} \frac{\mathrm{d}\Phi_{\mathrm{all}}}{\mathrm{d}E} \end{bmatrix}_{(E_{\nu}=10^{18} \text{ eV})}^{n-dec,CMB}$$

EeV-Cosmogenic Neutrinos

BUT Many «parameters»...

- Total emissivity in UHECRs
- Average acceleration spectrum
- Chemical composition of UHECRs
- Average maximum acceleration energy
- Cosmological evolution of UHECR sources

Astrophysical Sources of Neutrinos

UHECR Composition ?

• Light elements around EeV energies

• No consensus at UHE

UHECR Composition, Implications

➡ Kido & Kalashev for TA 2013, ICRC 2013

TA data, dip model

Auger data, rigidity-dependent maximum acceleration energy at the sources

UHECR Composition and UHE Neutrinos

• Strong dependence of the EeV-cosmogenic flux with the CR composition at UHE

• Observation or nonobservation of EeVneutrinos would be an indirect tool to understand the CR composition at UHE

PeV-Cosmogenic Neutrinos

• $<E_p>\sim 1.6 \ 10^{17} eV/(E_Y/eV)$ with UV/optical/IR photons

→ Cosmogenic neutrinos from pion decay peaking around 8 10^{15} eV/(1+z)/(E_Y/eV)

UHE Neutrinos: Current Searches with Ground Array of Particle Detectors

➡ Horizontal Air Showers

- CRs initiate showers high in the atmosphere
 - ➡ e.m. component absorbed in the atmosphere
 - ➡ Shower front composed mainly of muons
- Neutrinos can initiate <u>deep</u> showers
 - \Rightarrow Shower front composed of µ+e.m. components

Searching for neutrinos ⇒ searching for inclined showers with electromagnetic component

Water Cherenkov Detectors : Auger

➡ Distinguishing muonic from e.m. shower front from the time structure of the WCD signals

Radio-Detection: the Askaryan Effect

 \bullet e.m. cascade : Compton scattering of photons on atomic electrons induce negative charge excess of ${\sim}20\%$

• Negative charge radiates coherently at MHz-GHz => $P \sim E^2$

 Askaryan effect observed on ice at SLAC with 12-tons of ice + ANITA

• Ice is good for radio-detection of neutrinos: long radio attenuation lengths (1km for RF vs ~100m for optical signals used by IceCube)

• ANITA, TREND, ARIANNA, ARA, Greenland Neutrino Observatory, EVA

ANITA-I & ANITA-II

Current Limits

integral limits: assume E⁻² v flux & find normalization needed to detect ~ 2.4 events differential limits: assume E⁻² v flux in energy bins & find normalization to have 2.4 events in each bin EAS ground array sensitivity peaks at peak of cosmogenic fluxes (~EeV)

v Model	IceCube-40	Auger (Earth-skim.)	
GZK - p, Fermi-LAT (dashed black line)	~ 0.4	~ 0.6	Poorly constrained
GZK - p, FRII evolution (top edge red band)	~ 1.8	~ 2.2	Starts to be constrained
AGN (solid black line)	~ 5.5	~ 1.2	Strongly constrained

→ event rates (estimated):

Askaryan Radio Array

• Plan: 37-station array of antennas buried 200m below the surface at the South Pole

• 3 stations+testbed deployed and working

• Blind analyses of 10% sample of the 2011 and 2012 testbed station data

Future Sensitivity Estimates

 \rightarrow In 5-10 years, hope to have UHEv observatories

UHECR Sources ?

➡ Auger Collaboration, APP 34 314 (2010)

➡ TA Collaboration, arXiv:1404.5890

AGN Correlation

Correlation with Large-Scale Structure

➡ TA Collaboration, ApJ (2012)

→ Auger Collaboration, APP 34 314 (2010)

Fig. 5. Cosmic ray density map for the flux-weighted 2MRS galaxies, smoothed with an angular scale $\sigma = 5^{\circ}$. The black dots are the arrival directions of the CRs with energy $E \ge 55$ EeV detected with the Pierre Auger Observatory. Galactic latitudes are restricted to $|b| > 10^{\circ}$, both for galaxies and CR events.

➡ Need for a large fraction of isotropic background...

Full-Sky Map > 10 EeV

• Upper Limits on dipole ~ 9%

- Joint analysis Auger/TA
- Submitted to ApJ

Upper Limits at EeV Energies

➡ excludes the hypothesis that the light component of EeV-cosmic rays is of Galactic origin from stationary sources emitting in all directions.

Gal/Xgal Transition ?

Outlook

- In 5-10 years, sensitivity to detect EeV-neutrinos
- Issue of the light vs heavy composition at UHE
- Absence of correlations at UHE with nearby matter
- Light CR component entering below 1 EeV, most likely protons of extragalactic origin
- Neutrinos and UHECR sources: protons above 10 EeV ?