Study of ultra-high energy cosmic rays through their radio signal in the atmosphere

Benoît Revenu
SUBATECH
École des Mines de Nantes
Université de Nantes
CNRS/IN2P3
Outline

1. Physics and astrophysics of ultra-high energy cosmic rays
2. The extensive air showers
 a. Contents of a shower
 b. Detection by a surface detector
 c. Detection by a fluorescence detector
3. The radio signal
 a. Theoretical computation
 b. Contribution of two mechanisms
 c. Up to GHz frequencies
 d. Down to kHz frequencies: the sudden death signal
4. Detection of the radio signal
 a. The antennas and amplifiers
 b. Deconvolution of the antenna and electronics responses
 c. External triggering, self-triggering, background
 d. Arrays of radio stations: experimental status
5. Primary cosmic ray characteristics reconstruction
 a. Arrival direction
 b. Energy
 c. Composition
6. Summary and perspectives
Outline

1. Physics and astrophysics of ultra-high energy cosmic rays
2. The extensive air showers
 a. Contents of a shower
 b. Detection by a surface detector
 c. Detection by a fluorescence detector
3. The radio signal
 a. Theoretical computation
 b. Contribution of two mechanisms
 c. Up to GHz frequencies
 d. Down to kHz frequencies: the sudden death signal
4. Detection of the radio signal
 a. The antennas and amplifiers
 b. Deconvolution of the antenna and electronics responses
 c. External triggering, self-triggering, background
 d. Arrays of radio stations: experimental status
5. Primary cosmic ray characteristics reconstruction
 a. Arrival direction
 b. Energy
 c. Composition
6. Summary and perspectives
Outline

1. Physics and astrophysics of ultra-high energy cosmic rays
2. The extensive air showers
 a. Contents of a shower
 b. Detection by a surface detector
 c. Detection by a fluorescence detector
3. The radio signal
 a. Theoretical computation
 b. Contribution of two mechanisms
 c. Up to GHz frequencies
 d. Down to kHz frequencies: the sudden death signal
4. Detection of the radio signal
 a. The antennas and amplifiers
 b. Deconvolution of the antenna and electronics responses
 c. External triggering, self-triggering, background
 d. Arrays of radio stations: experimental status
5. Primary cosmic ray characteristics reconstruction
 a. Arrival direction
 b. Energy
 c. Composition
6. Summary and perspectives
Outline

1. Physics and astrophysics of ultra-high energy cosmic rays
2. The extensive air showers
 a. Contents of a shower
 b. Detection by a surface detector
 c. Detection by a fluorescence detector
3. The radio signal
 a. Theoretical computation
 b. Contribution of two mechanisms
 c. Up to GHz frequencies
 d. Down to kHz frequencies: the sudden death signal
4. Detection of the radio signal
 a. The antennas and amplifiers
 b. Deconvolution of the antenna and electronics responses
 c. External triggering, self-triggering, background
 d. Arrays of radio stations: experimental status
5. Primary cosmic ray characteristics reconstruction
 a. Arrival direction
 b. Energy
 c. Composition
6. Summary and perspectives
The radio signal

three observables:

1. secondary particles reaching the ground level (SD)
2. fluorescence light (FD)
3. electric field emitted by all e^+/e^-: radio waves!

very interesting because probes specifically the electromagnetic component of the shower!
important for composition studies
The radio signal: interference, coherence

Source of the radio signal: the e^+ and e^- of the shower
the characteristics scales describing the shower have a role in the observed signal.
The radio signal: interference, coherence

Source of the radio signal: the e^+ and e^- of the shower

The characteristics scales describing the shower have a role in the observed signal

- $\lambda \gg$ shower dimensions
 - fields add up with the same phase
 - coherence: constructive interference
 - total field $\propto N_{\text{particles}} \propto E_{\text{primary}}$

- $\lambda \ll$ shower dimensions
 - fields add up with random phases
 - incoherence: destructive interference

\rightarrow cut-off in the frequency spectrum

(see also J. Alvarez-Muniz, ARENA2014)
The radio signal (modern computation)

For a single particle of charge q and a finite lifetime

Charge density

$$
\rho(x', t') = q[\theta(t' - t_1) - \theta(t' - t_2)]\delta^3(x' - x_0(t'))
$$

Current density

$$
J(x', t') = \rho(x', t')v(t')
$$

Solution of Maxwell equations in Lorenz gauge:

$$
\vec{E} (\vec{x}, t) = \frac{1}{4\pi\varepsilon_0} \int d^3x' d^3t' \frac{1}{R} \left(-\nabla' \rho - \frac{1}{c^2} \frac{\partial J}{\partial t'}\right) \delta \left(t' - \left(t - \frac{|x - x'|}{c/\eta}\right)\right)
$$

$$
\vec{E} (\vec{x}, t) = \frac{1}{4\pi\varepsilon_0} \left(\frac{q \vec{n}}{R^2 (1 - \eta \vec{\beta} \cdot \vec{n})} + \frac{1}{c} \frac{\partial}{\partial t} \frac{q \vec{n}}{R (1 - \eta \vec{\beta} \cdot \vec{n})} - \frac{1}{c} \frac{\partial}{\partial t} \frac{q \vec{\beta}}{R (1 - \eta \vec{\beta} \cdot \vec{n})}\right)_{\text{ret}}
$$
The total radio signal

\[\vec{E}(\vec{x}, t) = \frac{1}{4\pi\varepsilon_0} \left(\sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i^2 (1 - \eta \beta_i \cdot \vec{n}_i)} + \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \beta_i \cdot \vec{n}_i)} - \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \beta_i}{R_i (1 - \eta \beta_i \cdot \vec{n}_i)} \right) \]

Coulombian contribution

Charge excess contribution

Transverse current contribution
Transverse current contribution

\[-\frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \tilde{\beta}_i}{R_i(1 - \eta \tilde{\beta}_i \cdot \tilde{n}_i)} \]

(Kahn & Lerche 1967)

Dominant contribution!
Linear polarization!
Independent on the observer’s location!

\[\frac{\partial}{\partial t} \tilde{\beta}_i \propto \tilde{\beta}_i \times \tilde{B} + \text{random deviations} \]

Almost same direction as the shower axis
Geomagnetic field

The electric field due to this mechanism should be higher when the shower incoming direction is perpendicular to the geomagnetic field
Transverse current contribution

\[-\frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{\beta}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)}\]
Transverse current contribution

\[- \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{\beta}_i}{R_i(1 - \eta_i \vec{\beta}_i \cdot \vec{n}_i)} \]

\[\vec{E}_{\text{geo}} \propto \vec{\beta} \times \vec{B} \]

from *measurements* of the electric field in the EW and NS polarization, we can compute the polar. angle:

\[\phi_{\text{mes}} = \arctan\left(\frac{E_{\text{NS}}}{E_{\text{EW}}}\right) \]

and compare it to the *expected* polar. angle:

\[\phi_{\text{exp}} = \arctan\left(\frac{(\vec{\beta} \times \vec{B})_{\text{NS}}}{(\vec{\beta} \times \vec{B})_{\text{EW}}}\right) \]
Transverse current contribution

\[- \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{\beta}_i}{R_i(1 - \eta \vec{\beta}_i \cdot \vec{n}_i)} \]

\(\vec{E}_{\text{geo}} \propto \vec{\beta} \times \vec{B} \)

from **measurements** of the electric field in the EW and NS polarization, we can compute the polar angle:

\[\phi_{\text{mes}} = \arctan \left(\frac{E_{\text{NS}}}{E_{\text{EW}}} \right) \]

and compare it to the **expected** polar angle:

\[\phi_{\text{exp}} = \arctan \left(\frac{(\vec{\beta} \times \vec{B})_{\text{NS}}}{(\vec{\beta} \times \vec{B})_{\text{EW}}} \right) \]
Transverse current contribution

\[- \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{v}_i}{R_i(1 - \eta \vec{v}_i \cdot \vec{n}_i)} \]

\[\vec{E}_{\text{geo}} \propto \vec{v} \times \vec{B} \]

from measurements of the electric field in the EW and NS polarization, we can compute the polar. angle:

\[\phi_{\text{mes}} = \arctan \left(\frac{E_{\text{NS}}}{E_{\text{EW}}} \right) \]

and compare it to the expected polar. angle:

\[\phi_{\text{exp}} = \arctan \left(\frac{(\vec{v} \times \vec{B})_{\text{NS}}}{(\vec{v} \times \vec{B})_{\text{EW}}} \right) \]

CODALEMA data

The geomagnetic contribution is dominant
Charge excess contribution

\[+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i(1 - \eta \vec{\beta}_i \cdot \vec{n}_i)} \]

(Askaryan 1962, 1965)

No net electric field if \(n_{e^+} = n_{e^-} \)

but \(n_{e^+} < n_{e^-} \) because:

- in flight e+ annihilation
- electrons are extracted from the medium (Compton, Bhabha, Moeller)

\[e_{\text{atomic}} \rightarrow e_{\text{free}} \quad e^- \]
\[e^+ \rightarrow e^+ \]
\[e^- \rightarrow e^- \quad e_{\text{atomic}} \rightarrow e_{\text{free}} \]
No net electric field if \(n_{e^+} = n_{e^-} \)

but \(n_{e^+} < n_{e^-} \) because:

- in flight e+ annihilation
- electrons are extracted from the medium (Compton, Bhabha, Moeller)

this excess of electrons leads to a

- net electric field
- with a radial polarization pattern
- depends on the observer’s location

\[+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \beta_i \cdot \vec{n}_i)} \]

Charge excess contribution

AERA data

\(a = 0 = \text{pure geomagnetic} \)

\[\chi^2 / \text{ndf} = 27 \]

\[\rho_p = 0.82^{+0.06}_{-0.04} (2\sigma) \]
Charge excess contribution

\[\frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \bar{n}_i}{R_i(1 - \eta \beta_i \cdot \bar{n}_i)} + \text{AERA data} \]

\[\chi^2 / \text{ndf} = 2.2 \]

\[\rho_p = 0.93^{+0.04}_{-0.03} (2 \sigma) \]

\[\frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i (1 - \eta \beta_i \cdot \vec{n}_i)} \]

Charge excess contribution

Shift toward the east

East–west polarization

\[\theta = 0^\circ \]

\[\phi = 0^\circ \]
\[+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \, \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)} \]

Charge excess contribution

The 216 CODALEMA events with multiplicity ≥ 5

Reconstructed radio cores in shower core frames

The 216 CODALEMA events with SELFAS2.0 with multiplicity ≥ 5

no charge excess

Reconstructed radio cores in shower core frames
\[+ \frac{1}{c} \frac{\partial}{\partial t} \sum_{i=1}^{N} \frac{q_i \vec{n}_i}{R_i(1 - \eta \vec{\beta}_i \cdot \vec{n}_i)} \]

Reconstructed radio cores in shower core frames

- **The 216 CODALEMA events with multiplicity ≥ 5**
- **Reconstructed radio cores in shower core frames**

Charge excess contribution

CODALEMA events with SELFAS2.0

The 216 CODALEMA events with SELAS2.0 with multiplicity ≥ 5

with charge excess
Up to some GHz

extend the mechanisms observed in the MHz domain to the GHz domain
take into account the effect of a realistic refractive index

Proton

300 MHz - 1.2 GHz
Up to some GHz

extend the mechanisms observed in the MHz domain to the GHz domain
take into account the effect of a realistic refractive index

No MBR evidence in the GHz signal
Down to some kHz

Predicted mechanisms:

usual geomagnetic and charge excess contributions during the shower development in the air

+ the transition radiation when the shower front hits the ground

+ the coherent Bremsstrahlung of e^+/e^- when they reach the ground level

[B. R. ICRC2013, Rio]

\[
\vec{E}(\vec{x}, t) = \frac{1}{4\pi\varepsilon_0 c} \frac{\partial}{\partial t} \sum_{i=1}^{N} q_i \left(\frac{\vec{\beta}_i - (\vec{n}_i \cdot \vec{\beta}_i) \vec{n}_i}{R_i (1 - \eta \vec{\beta}_i \cdot \vec{n}_i)} \right)_{\text{ret}}
\]

\text{(Coulomb gauge)}

New contribution below 20 MHz, vertical polarization,
monopolar pulse with amplitude decreasing with $1/d_{\text{core}}$
(as already observed in the past by AGASA, Gauhati group, EAS-radio…)

sudden death
of the shower
Down to some kHz
Down to some kHz

amplitude (mV/m)

time (ns)

300 m

ground
Down to some kHz
Down to some kHz

(SELFAS simulations)

ground contribution
development in the air

MHz

MHz
Down to some kHz

(SelfAS simulations)

ground contribution
development in the air
Event-by-event comparison with simulations

AERA event
30-70 MHz

(LOFAR plots by S. Buitink)
Summary

• the radio signal is understood at a high level of accuracy (since beginning of 2014 only!) → this closes a 50 years old debate!

• two mechanisms are involved, both of them are clearly observed, explain all data from 20 MHz to 4 GHz (no MBR signal detected up to now)

• hint for a new mechanism at low frequencies (below 20 MHz): sudden death signal → will be investigated by the EXTASIS experiment (Nançay, France)

 the radio signal (30-80 MHz) permits to:

 • reconstruct the arrival direction of the primary cosmic ray with high resolution (< 0.5°)
 • estimate the primary energy at a level of ~25%
 • estimate the shower maximum with an uncertainty around 20 g/cm² (LOFAR team, submitted), similar to the fluorescence technique but with ~100% duty cycle instead of 14%

 → the radio signal allows a full reconstruction of the primary cosmic ray
Summary

- **VLF** (3-30 kHz)
 - Pioneers of the 70s: EASRADIO, Akeno, AGASA
 - NO data, NO model, NO simu
 - Geomagnetic charge excess
 - NO data, model, simu
 - ~30 events

- **LF** (30-300 kHz)
 - Transition radiation, other mechanism?
 - Geomagnetic, charge excess, Cherenkov, MBR
 - ~7000 events

- **MF** (0.3-3 MHz)
 - AM
 - R&D, sudden death mechanism
 - many events
 - limited range (large for inclined showers)
 - few unexplained events (from old experiments)
 - R&D but decreasing interest
 - Geomagnetic, charge excess, Cherenkov, MBR
 - ~20 events

- **HF** (3-30 MHz)
 - Pioneers of the 70s, AERA, CODALEMA, LOPES, LOFAR, TREND, ...
 - NO data, model, simu
 - ~2000 events

- **VHF** (30-300 MHz)
 - CROME, MIDAS, AMBER, EASIER
 - ~30 events

- **UHF** (0.3-3 GHz)
 - ANITA
 - NO data, model, simu
 - ~20 events

- **Pioneers of the 70s**
 - EASRADIO, Akeno, AGASA
 - many events
 - limited range (large for inclined showers)
 - few unexplained events (from old experiments)

- **Gauhati EXTASIS**
 - R&D
 - sudden death mechanism
 - large range
 - very limited range
 - small amplitude
Future and perspectives

Upcoming and running experiments:

- LOFAR: low energy, very dense array, good for detailed analysis
- AERA, in Auger: high energy, correlation with fluorescence and particles
- TREND: low energy, inclined showers
- EXTASIS (former CODALEMA): sudden death signal at low frequencies, large range
- Tunka-REX: correlation with optical Cherenkov data

Limited range in 30-80 MHz:

- the idea to have a huge radio array only seems outdated (would need dense array, expensive)
- investigate inclined showers
- go down to ~MHz domain
- hybrid analysis with another UHECR detector (case of AERA)
Experimental summary

- 1965: First EAS detection with radio
- 1975: End of radio research
- 2001: Radio is back!
- 2009: Tunka-REX
- 2011: + EXTASIS
- 2013: LOFAR
- 2014: AERA
- 2014: CODALEMA
- 2013: LOFAR
- 2011: AERA
- 2010: RAuger (pre-AERA)
- 2005: MAXIMA (pre-AERA)
- 2003: TREND

LOPES
Simulation efforts summary

- SELFAS1
- SELFAS2
- MGMR
- EVA
- ZHAireS
- REAS1
- REAS2
- REAS3
- CoREAS

Years:
- 2001
- 2003
- 2006
- 2009
- 2011
- 2013
Simulation efforts summary

REAS1: microscopic, geosynchrotron, shower from analytical parameterizations
REAS2: microscopic, geosynchrotron, shower from CORSIKA histograms
REAS3: microscopic, end-points formalism, shower from CORSIKA histograms
CoREAS: microscopic, end-points formalism, integrated in CORSIKA directly

since the end-points formalism, the radiation from the variation of charge and current are taken into account

MGRM: macroscopic, use charge and current distributions + Maxwell, 1D shower (no lateral dispersion), pancake thickness modelled, fixed index of refraction
EVA: macroscopic, use charge and current distributions + Maxwell, full 3D shower (CONEX), variable index of refraction

SELFAS1: microscopic, no lifetime limit to the particles, fixed index of refraction, 3D shower from universality
SELFAS2: microscopic, lifetime limited particles, variable index of refraction, 3D shower from universality

ZHAireS: microscopic, lifetime limited particles, variable index of refraction, full 3D shower (AIRES)