QUEST FOR NEW PHYSICS DRIVEN BY EXPERIMENT AND SIMPLICITY

Oleg Ruchayskiy

Xth Rencontres du Vietnam

July 30, 2014
As a particle physicists we want to build “The Theory” such that

- All observed phenomena are explained
- All predicted particles are discovered
- The resulting theory is mathematical self-consistent

Are we there yet?
All predicted particles are found!

Century long quest came to its end – all predicted particles have been found!

Oleg Ruchayskiy QUEST FOR NEW PHYSICS DRIVEN BY MINIMALITY...
Mass of the Higgs boson ~ 126 GeV means that the Standard Model is a consistent weakly-coupled theory up to very high scales (probably to the Planck scale)

Bezrukov et al. “Higgs boson mass and new physics” [1205.2893]

Also Degrassi et al. [1205.6497], Buttazzo et al. [1307.3536]
"It is expected that the difference between the MC mass definition and the formal pole mass of the top quark is up to the order of 1 GeV" [1403.4427]
Is this the end?

✓ All predicted particles of the Standard Model have been found 😊
✓ The theory behind these particles and their interactions stays mathematically consistent to very high energies 😊

Did we just had the last Nobel Prize in particle physics?
Particle physics: neutrino oscillations

Cosmology and astrophysics: particle physics (coupled to Einstein gravity) applied to the Universe as a whole faces the challenges of

– dynamics of gravitating objects at scales from galactic to cosmological (dark matter?)
– absence of primordial asymmetry of the Universe

Possibly

– initial conditions for the Universe (inflation?)
– accelerated expansion of the Universe (dark energy?)
Expectations for new physics?

- Unsolved problems \Rightarrow **new particles should exist**
- We did not detect them \Rightarrow they are **heavy**
- How heavy can they be? – Not too much!
- Indeed, Higgs mechanism gives mass to all the particles

$\text{heavy particle} \iff \text{Strong interaction with Higgs boson} \Rightarrow \text{Large quantum corrections to the Higgs boson mass}$

this is known as “gauge hierarchy problem”

- \Rightarrow New physics should be about electroweak scale?
Searches for new physics at LHC

CMS Exotica Physics Group Summary – ICHEP, 2014

Leptoquarks
- stopped gluino (cloud)
- HSCP gluino (cloud)
- HSCP stop (cloud)
- q=2/3e HSCP
- q=3e HSCP

Long-Lived Particles
- neutralino, ctau=25cm, ECAL time

RS Gravitons
- RS1(γγ), k=0.1
- RS1(ee,uu), k=0.1
- RS1(jj), k=0.1
- RS1(WW→4j), k=0.1

Dark Matter
- SSM Z'(ττ)
- SSM Z'(jj)
- SSM Z'(bb)
- SSM W'(ej)+Z'(µµ)
- SSM W'(WZ→ljll)
- SSM W'(WZ→lj4j)

Heavy Gauge Bosons
- ADD (γγ), nED=4, MS
- ADD (ee,µµ), nED=4, MS
- ADD (j+MET), nED=4, MD
- ADD (γ+MET), nED=4, MD
- QBH, nED=4, MD=4 TeV
- NR BH, nED=4, MD=4 TeV

Excited Fermions
- e* (M=Λ)
- μ* (M=Λ)
- q* (qg)
- q* (qγ)
- b*

Multijet Resonances
- dijets, Λ+ LL/RR
- dijets, Λ- LL/RR
- dimuons, Λ+ LLIM
- dimuons, Λ- LLIM
- di-electrons, Λ+ LLIM
- di-electrons, Λ- LLIM
- single e, Λ HnCM
- single μ, Λ HnCM
- inclusive jets, Λ+
- inclusive jets, Λ-

Large Extra Dimensions
- String Scale (jj)
- Large Extra Dimensions

CMS Preliminary

Oleg Ruchayskiy

QUEST FOR NEW PHYSICS DRIVEN BY MINIMALITY...
Heavy or light?

- Unsolved problems ⇒ new particles should exist ✓

- We did not detect them ⇒ they are heavy light but very weakly interacting

- Higgs mechanism gives mass to all the particles

 \[
 \text{No heavy particle} \implies \text{No corrections to the Higgs boson mass}
 \]

Is it possible to resolve the BSM problems with light very weakly interacting particles?

▶ Complete (testable?) theory, valid up to Planck scale?
Two directions

Known physics

Unknown physics

New physics at electroweak scale explored at LHC (energy frontier)

Focus of this proposal:
Feebly coupled particles to be searched at SHIP experiment at CERN (intensity frontier)

Mass of particles

Interaction strength

Oleg Ruchayskiy

QUEST FOR NEW PHYSICS DRIVEN BY MINIMALITY...
Neutrino oscillation between three generations
Neutrino oscillations mean that there exist new particles!
Oscillations ⇒ new particles!

Right components of neutrinos?!
Scale of sterile neutrino masses?

See-saw formula

\[|F| \quad \text{Neutrino Yukawa interaction} \]

\[M_{\text{active}} \sim \frac{v^2 |F|^2}{M_N} \]

\(M_N \quad \text{Neutrino Majorana mass} \)

Mass of sterile neutrinos is not determined by neutrino oscillations!
Sterile neutrinos behave as superweakly interacting massive neutrinos with a smaller Fermi constant \(\vartheta \times G_F \)

- This mixing strength or mixing angle is

\[
\vartheta_{e,\mu,\tau}^2 \equiv \frac{|M_{\text{Dirac}}|^2}{M_{\text{Majorana}}^2} = \frac{M_{\text{active}}}{M_{\text{sterile}}} \approx 5 \times 10^{-11} \left(\frac{1 \text{ GeV}}{M_{\text{sterile}}} \right)
\]

- Another name \(\Rightarrow \) heavy neutral leptons (or HNL)
If sterile neutrinos exist – how to find them?
Bounds on sterile neutrinos

Oleg Ruchayskiy QUEST FOR NEW PHYSICS DRIVEN BY MINIMALITY... 17
Bounds on sterile neutrinos
Ya. Zel’dovich: The Universe is the poor man’s accelerator: experiment doesn’t need to be funded, and all we have to do is to collect the experimental data and interpret them properly.

Why?

⇒ Primordial plasma could have reached the densities and temperatures unachievable in the lab for the longest possible times.

⇒ Especially relevant if we are after some effects due to very-weakly-interacting particles/rare processes.
Lifetime of HNLs

- Mode that always exists $N \rightarrow \nu \bar{\nu} \nu$

- Estimate lifetime from **neutrino oscillations**

\[
\text{Lifetime}_{N} = \left(\frac{\vartheta^2 G_F M_N^5}{86\pi^3} \right)^{-1} \approx 0.3 \text{ sec} \left(\frac{1 \text{ GeV}}{M_N} \right)^4
\]

For illustration only! The width of the line can be even larger
Sterile neutrino and BAU

Red stripes: ranges of masses where generation of BAU is possible (approximate)

Sterile neutrinos with their Majorana masses + CP phases in the Yukawa matrix satisfy all three Sakharov conditions and generate baryon asymmetry of the Universe (via leptogenesis)
• Very long-lived particles ⇒ dark matter?

• Take $M_N \sim 1$ keV. Lifetime $\tau_N \sim 10^{24}$ sec — is this long enough?

• Fraction of decayed DM particles: $\frac{\text{Age of the Universe}}{\tau_N} \sim 10^{-6}$
Lifetime of τ_N

- **But!** in a galaxy like Andromeda or Milky Way (total mass $M_{\text{gal}} \sim 10^{12} M_\odot$) there would be 10^{75} DM particles with the mass 1 keV

- **Subdominant** ($\text{Br} \sim \frac{1}{123}$) decay channel: $N \rightarrow \nu + \gamma$

\[\Gamma_{N \rightarrow \nu \gamma} = \frac{9\alpha G_F^2 \vartheta^2 M_N^5}{256\pi^4} \]
\[E_\gamma = \frac{1}{2} M_N \]

- Therefore, decay of a small fraction of 10^{75} particles releases $\sim 10^{40}$ erg/sec in 0.5 keV photons

- The entire X-ray luminosity of Andromeda galaxy in the range 0.1 – 2.4 keV is $L_X \sim \text{few} \times 10^{39}$ erg/sec (90% of which is coming from point sources)
Dark matter and neutrino oscillations

- Two neutrino mass splitting ⇒ need (at least) two sterile neutrino

- Are they Dark matter? ⇒ No way! Very short lifetime

- Third sterile neutrino? ⇒ Yes! Great DM (its exact properties depend on two other sterile neutrinos)

Sterile neutrino is a viable dark matter candidate in a model with at least two other sterile neutrinos
Neutrino Minimal Standard Model (νMSM)

Talk by D. Gorbunov on Friday

Masses of sterile neutrinos as those of other leptons
Yukawas as those of electron or smaller

Detection of An Unidentified Emission Line

Prediction? Dark matter should be decaying, emitting monochromatic photon

DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS

Esra Bulbul, Maxim Markevitch, Adam Foster, Randall K. Smith, Michael Loewenstein, and Scott W. Randall

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.
2 NASA Goddard Space Flight Center, Greenbelt, MD, USA.

[1402.2301]

An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster

A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, and J. Franse

1 Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands
2 Ecole Polytechnique Fédérale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland

[1402.4119]
Unidentified spectral line at $E \sim 3.5$ keV

<table>
<thead>
<tr>
<th>Source</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boyarsky et al. 2014</td>
<td>M31 galaxy XMM-Newton, center & outskirts</td>
</tr>
<tr>
<td></td>
<td>Perseus cluster XMM-Newton, outskirts only</td>
</tr>
<tr>
<td></td>
<td>Blank sky XMM-Newton</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulbul et al. 2014</td>
<td>73 clusters XMM-Newton, central regions of clusters only. Up to $z = 0.35$, including Coma, Perseus</td>
</tr>
<tr>
<td></td>
<td>Perseus cluster Chandra, center only</td>
</tr>
<tr>
<td></td>
<td>Virgo cluster Chandra, center only</td>
</tr>
</tbody>
</table>

Position: 3.52 ± 0.02 keV.

Lifetime: $\sim 10^{28}$ sec (uncertainty $\mathcal{O}(10)$)

Significance: Between 4σ and 5σ (global, taking into account trial factors)
Surface brightness profile (Perseus)

Perseus cluster surface brightness profile

NFW DM line, $r_s = 360$ kpc
NFW DM line, $r_s = 872$ kpc
β-model, $\beta = 0.71$, $r_c = 287$ kpc

This is not a fit!
Sterile neutrino DM with such parameters is not completely cold and would leave its imprints in the formations of structures.
Resonant enhancement

Conversion of ν to N is enhanced whenever “levels” cross and virtual neutrino goes “on-shell” (analog of MSW effect but for active-sterile mixing)

Shi & Fuller
[astro-ph/9810076]

Laine & Shaposhnikov
[0804.4543]
Dark matter and neutrino oscillations

- Two neutrino mass splitting \(\Rightarrow\) need (at least) two sterile neutrino

- Are they Dark matter? \(\Rightarrow\) No way! Very short lifetime

\[
\text{Lifetime}_{N} = \left(\frac{\vartheta^2 G_F^2 M_N^5}{86\pi^3}\right)^{-1} \\
\approx 0.3 \text{ sec } \left(\frac{1 \text{ GeV}}{M_N}\right)^4
\]

- Third sterile neutrino? \(\Rightarrow\) Can be dark matter

Lepton asymmetry needed for its production can be created by two other sterile neutrinos
A dedicated experiment

Proposal to Search for Heavy Neutral Leptons at the SPS

Expression of Interest. Endorsed by the CERN SPS council

Talk by N. Serra on Friday
Conclusions

- Observable beyond-the-Standard-Model puzzles mean that **new particles exist**

- These particles can be either **heavy** or **super-weakly interacting**

- Neutrino oscillations suggest that sterile neutrinos (heavy neutral leptons) do exist

- Such particles can explain baryon asymmetry of the Universe, provide dark matter candidate and explain neutrino oscillations

- The simplest model that incorporates all that (the νMSM) looks like Standard Model from the point of view of todays’ experiments

- SHIP and other **intensity frontier** experiments

- **Cosmic frontier** to compliment the direct searches
Thank you for your attention
Surface brightness profile (M31)

M31 surface brightness profile

On-center
Off-center 2σ upper bound
NFW DM line, c = 11.7
NFW DM line, c = 19

This is not a fit!
Bulbul et al. took only 2 central XMM observation – 14′ around the cluster’s center. We took 16 observations excluding 2 central XMM observations to avoid modeling complicated central emission.
• All spectra blue-shifted in the reference frame of clusters

• Instrumental background processed similarly and subtracted
Higher masses (PRELIMINARY!)

From M. Shaposhnikov’s talk at TLEP-7 workshop