Xth Rencontres du Vietnam

Flavour Physics Conference

Heavy flavor spectroscopy and production at

Victor Egorychev

On behalf of the LHCb collaboration

Outline

Heavy flavor spectroscopy

✓ X(3872) state in B⁺→ ψ (2S) γ K⁺ decays ✓ Z(4430)⁻ state in B⁰→ ψ (2S) K⁺ π ⁻ decays ✓ Search for f₀(980) in B⁰→ J/ ψ π ⁺ π ⁻ decays

Heavy flavor production

✓ kinematic dependences of the relative production rates f_{Λ_b}/f_d ✓ Production of $\chi_b(1P,2P,3P)$ states

X(3872) state

X(3872) discovered by Belle in 2003, also observed by CDF, D0, BaBar, LHCb and CMS

- Exotic particle X(3872)
 - discovered in $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ decay mode
 - $M = 3871.68 \pm 0.17 \text{ MeV/c}^2$ $M \simeq M(D^0) + M(D^{*0})$
 - $-\Gamma < 1.2 \text{ MeV/c}^2$
 - $J^{PC} = 1^{++}$ by LHCb using B⁺ \rightarrow X(3872)K⁺, X(3872) \rightarrow J/ $\psi \pi^{+}\pi^{-}$

- Nature is still unclear, possible interpretations:
 - D⁰D^{*0} molecula
 - conventional $\chi_{c1}(2P)$
 - tetraquark
 - ...
 - and their mixtures

Radiative decay of X(3872)

 $X(3872) \rightarrow \psi(2S)\gamma$ decay allows to better understand the nature of X(3872)

Predictions for the ratio

$$R_{\psi\gamma} \equiv \frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)}$$

Model	Prediction
charmonium, $\chi_{c1}(2P)$	1.2 – 15
molecula, DD*	$(3-4) \times 10^{-3}$
mixture $\chi_{c1}(2P) + DD^*$	0.5 - 5

LHCb-PAPER-2014-008, Nucl.Phys B 886 (2014) 665

eve	nts	signific	cance
$\psi(2S)\gamma$	$J/\psi\gamma$	$\psi(2S)\gamma$	$J/\psi\gamma$
25.4±7.3	23.0±6.4	3.6σ	3.5σ
$5.0^{\scriptscriptstyle +11.9}_{\scriptscriptstyle -11.0}$	$30.0^{+8.2}_{-7.4}$	0.4σ	4.9σ

Projections of the 2D fit to $M(\psi(2S)\gamma~K)$ and $M(\psi(2S)\gamma$)

The significance was estimated with simplified simulation ⁵

LHCb-PAPER-2014-008, Nucl.Phys B 886 (2014) 665

 $R_{\psi\gamma}$ \checkmark The LHCb results are consistent with, but more precise than, the BaBar and Belle results

2 3 4

✓ The results are not consistent with the expectations for pure molecular X(3872) ✓ X(3872) is likely a mixture of a $\chi_{c1}(2^3P_1)$ charmonium state and of D⁰D^{*0} molecule

Z(4430)⁻

Phys. Rev.Lett. 100 (2008) 142001

Observation of a resonance-like structure in the $\pi^{\pm}\psi'$ mass distribution in

exclusive $B \rightarrow K \pi^{\pm} \psi$ decays

The observation could be interpreted as the first evidence for the existence of mesons beyond the traditional quark-anti-quark model

Belle Discovers a New Type of Meson

Z(4430)⁻ in BaBar and Belle

Almost model independent approach to $K^* \rightarrow K\pi^-$ backgrounds

BaBar did not confirm Z(4430)⁻ in B sample comparable to Belle

Did not numerically contradict the Belle results $BR(B^0 \rightarrow Z^-K^+) \ge BR(Z^- \rightarrow \pi^-\psi(2S)) < 3.1 \times 10^{-5}$

Model dependent approach to $K^* \rightarrow K\pi$ backgrounds $J^P = 1^+$ prefered by > 3.4 σ

 $M(Z) = 4485^{+22}_{-22} + \frac{+28}{-11} MeV$

 $\Gamma(Z) = 200^{+41}_{-46} + \frac{+26}{-35}$ MeV significance 6.4 σ (5.6 σ with sys.) ⁸

Z(4430)⁻ *state in LHCb*

An order of magnitude larger signal statistics than in Belle or BaBar thanks to hadronic production of b-quarks at LHC

Even smaller non-B background than at the e⁺e⁻ experiments thanks to excellent performance of the LHCb detector (vertexing, particle identification)

LHCb-PAPER-2014-014

arXiv: 1404.1903

Z(4430)⁻ *state in LHCb*

LHCb uses both approaches

Moments analysis

LHCb-PAPER-2014-014 arXiv: 1404.1903

Z(4430)⁻ parameters in LHCb

beyond any doubt

effect included by LHCb)

11

Z(4430)⁻ in LHCb

Replace the Breit-Wigner amplitude for $Z(4430)^{-}$ by 6 independent amplitudes in $M^{2}(\psi(2S) \pi^{-})$ bins in its peak region

Observe a fast change of phase crossing maximum of magnitude

Expected behaviour for a resonance

LHCb-PAPER-2014-014 arXiv: 1404.1903

First time ever the resonant character of the four-quark candidate has been demonstrated this way!

More than one $Z(4430)^- \rightarrow \psi(2S)\pi^-$

One more Z resonance may be included

Argand diagram studies are inconclusive

Need more data to clarify!

 $M(Z) = 4239 \pm 18^{+45}_{-10} \text{ MeV}$ $\Gamma(Z) = 200 \pm 47^{+108}_{-74} \text{ MeV}$

Excitement E

.

.....

I II CI

LHCb confirms existence of exoti hadrons	C How CERN's Discovery of Exotic Particles May Affect Astrophysics by BRIAN KOBERLEIN 007 APRIL 10, 2014	
大型强子对撞机捕获到神秘粒子Z (4430) 或许成为物质形式 "四夸克态"存在的有力证据 2014/04/13 15:46 LHCb実験を行っている国際研究チームが、4個のクォークが結合した粒子である「Z(4430)」」を含成したと発表した。Z(4430)としては、初発見から7年目にしてようやく別の研究チームが存在を立証した事になる。		
นักฟิสิกส์ยืนยันพบฮาดรอนสองคว้ากสองแอนตีคว้าก written by natty_sci on april 13, 2014. Posted in ทีลิกส์. วิทราศาสตร์ อ่าสุด เครื่อง LHCb ได้มีการศึกษาอีกครั้งและใช้ข้อมูลอนุภาคจากเครื่องโดยดรงมาวิเคราะห์ แต่นำเอาเทคนิคการวิเคราะห์ของศูนย์ ปฏิบัติการวิจัยเบลล์และ BaBar มาใช้ ศาสตราจาร์ชวาร์นิคกี้และทีมงานได้ยืนยินแล้วว่า Z(4430) นั้นม้อยู่จริง และ exotic hadron ก็มี		
אותות של 2000 (Z (4430) מדהימה – לפחות 13.9 סיגמה – דבר המאשר את קיומו של מצב זה" אמר דובר איג'י קמפנה. "ניתוח ה- LHCb חשף את הטבע המהדהד של המבנים הנצפים, והוכיח כי זהו באמת חלקיק, חדת של הנתונים".	аксперимент LHCb окончательно доказал реальность экзотического мезона Z(4430)	
PISTOLA FUMANTE DI UNA PARTICELLA A QUATTRO QUAR LHCb kinnitas tetrakvargi olemasolu	Objavili čudnú časticu, urýchľovač ju potvrdil Beauty Tangkap Z (4430)	
Mungkin Tetraguark Mystisk partikel udfordrer fysikernes kvarkmodel SPIEGEL ONLINE WISSENSCHAFT Các nhà nghiên cứu tại LHC xác nhận sự tộn tại của hạt Exotisches Teilchen: Physikern gelingt Nachweis eines Partikels aus		
Tetraquark: tổ hợp tạo thành từ 4 quark Thảo luận trong 'Khoa học' bắt đầu bởi ndminhduc, 15/4/14.	De LHCb heeft 't bevestigd: er bestaan exotische hadronen 10 APRL 2014 DOOR ARE NOUWEN • REAGEER LHCb confirma la existencia de la partícula	
ر سال 2007 بشدت حنجال برانگیز بود و فیزیکدانان بر سر موجودیت یا عدم موجودیت آن اختلاف نظر داشتند ز آشکارساز LHCb ماورای هرگونه تردید منطقی موجود است. Time To Open the Gates of Hell2 CEDN: Large Hadron	Z(4430) formada por cuatro quarks Παρασκευή, 11 Απριλίου 2014 Ο LHCb επιβεβαιώνει την ύπαρξη εξωτικού σωματιδίου, LHCb confirms existence of exotic hadrons	
Collider Discovers 'Very Exotic Matter' That Challenges Traditional Physics! (Must-See Videos) Thursday, April 17, 2014 19:57	SAT APR 12, 2014 AT 08:25 PM PDT Tetra Quark: Not a New Star Trek Character, a New State of Matter.	

Spectroscopy in light quark sector

Scalar mesons in general (particular $f_0(980)$) are not well understood Recently, LHCb observed two channels $B_s \rightarrow J/\psi f_0(980)$ and $B_d \rightarrow J/\psi f_0(500)$ Many possibilities: $q\overline{q}$, $q\overline{q}q\overline{q}q$, mixtures...

When $f_0(500)$ and $f_0(980)$ are considered as $q\overline{q}$ states there is the possibility of their being mixtures of light and strange quarks mixing angle

$$|f_0(980)\rangle = \cos \varphi_m |s\overline{s}\rangle + \sin \varphi_m |n\overline{n}\rangle |f_0(500)\rangle = -\sin \varphi_m |s\overline{s}\rangle + \cos \varphi_m |n\overline{n}\rangle, \text{where } |n\overline{n}\rangle \equiv \frac{1}{\sqrt{2}} \left(|u\overline{u}\rangle + |d\overline{d}\rangle \right).$$

When these states are viewed as $q\overline{q}q\overline{q}$ states the wave functions becomes

$$|f_{0}(980)\rangle = \frac{1}{\sqrt{2}} \left(|[su][\overline{s}\,\overline{u}]\rangle + |[sd][\overline{s}\overline{d}]\rangle \right)$$

$$|f_{0}(500)\rangle = |[ud][\overline{u}\overline{d}]\rangle.$$

$$phase space factors factors for pure tetraquark tetraquark states ~1/2$$

$$tan^{2}\varphi_{m} \equiv r_{\sigma}^{f} = \frac{\mathcal{B}\left(\overline{B}^{0} \to J/\psi f_{0}(980)\right)}{\mathcal{B}\left(\overline{B}^{0} \to J/\psi f_{0}(500)\right)} \frac{\Phi(500)}{\Phi(980)}, \quad \text{for pure tetraquark states ~1/2}$$

$$15$$

Amplitude analysis $B_d \rightarrow J/\psi \pi^+ \pi^-$

LHCb-PAPER-2014-012 arXiv 1404.5673

 $\Lambda_{\rm h}$ production

The relative production rates of beauty hadrons are described by the fragmentation fractions f_u , f_d , f_s , f_c , and f_{Λ_b} which describe the probability that a b quark fragments into a B_q or a Λ_b . The kinematic dependences of the relative production rates f_{Λ_b}/f_d of Λ_b baryons and B_d mesons are measured using $\Lambda_b \rightarrow \Lambda_c \pi^+$ and $B_d \rightarrow D^+\pi^-$ decays

Λ_b production

 \checkmark The p_T dependence is accurately described by an exponential function

 \checkmark The ratio of fragmentation fractions $f_{\Lambda_b}/\,f_d$ decreases by a factor of three in the range $1.5 < p_T < 40~GeV/c$

 \checkmark The ratio of fragmentation fractions $f_{\Lambda_b}/\,f_d$ versus η is described by a linear dependence in the range $2<\eta<5$

Production of χ_b (1P,2P,3P) state

LHCb-PAPER-2014-031

 $\chi_b(3P)$ to $\Upsilon(3S)$ feed-down has been often neglected when comparing data and theory on $\Upsilon(3S)$ This measurements demonstrates its importance

The measurement of the $\Upsilon(3S)$ production fraction due to radiative $\chi_b(3P)$ decays is performed for the first time

Conclusions

✓X(3872)→ ψ (2S)γ decay now established at 4.4 σ

•BR(X(3872) $\rightarrow \psi(2S)\gamma$)/BR(X(3872) $\rightarrow J/\psi\gamma$) inconsistent with pure molecular interpretation of X(3872)

✓ Existence confirmation of $Z(4430)^{-1}$ with >13.9 σ

- quantum numbers determination $J^P = 1^+$
- resonant behaviour observed

• the charge and spin-party make Z(4430)⁻ unambiguous four-quark candidate

✓ No evidence for $f_0(980)$ in $B_d \rightarrow J/\psi \pi + \pi$ - decays

• resonance production $f_0(980)$ as a tetraquark state ruled out at 8σ

✓ New interesting results on $\chi_b(3P)$ production rate:

• $\chi_b(3P)$ to $\Upsilon(3S)$ feed-down is large

✓ The kinematic dependences of the relative production rates f_{Λ_b}/f_d of Λ_b baryons and B_d mesons are measured

✓ Looking forward for new exciting results!

LHCb-PAPER-2014-008, Nucl.Phys B 886 (2014) 665

LHCb-PAPER-2014-014 arXiv: 1404.1903

LHCb-PAPER-2014-012 arXiv 1404.5673

LHCb-PAPER-2014-031

arXiv 1405.6842