Xth Rencontres du Vietnam
Flavour Physics Conference

Heavy flavor spectroscopy and production at LHCb

Victor Egorychev
On behalf of the LHCb collaboration

Outline

Heavy flavor spectroscopy
$\checkmark \mathrm{X}(3872)$ state in $\mathrm{B}^{+} \rightarrow \psi(2 \mathrm{~S}) \gamma \mathrm{K}^{+}$decays
$\checkmark \mathrm{Z}(4430)^{-}$state in $\mathrm{B}^{0} \rightarrow \psi(2 \mathrm{~S}) \mathrm{K}^{+} \pi^{-}$decays
\checkmark Search for $\mathrm{f}_{0}(980)$ in $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}$decays

Heavy flavor production
\checkmark kinematic dependences of the relative production rates $\mathrm{f}_{\Lambda_{b}} / \mathrm{f}_{\mathrm{d}}$
\checkmark Production of $\chi_{b}(1 \mathrm{P}, 2 \mathrm{P}, 3 \mathrm{P})$ states

X(3872) state

X(3872) discovered by Belle in 2003, also observed by CDF, D0, BaBar, LHCb and CMS

- Exotic particle X(3872)
- discovered in

$$
\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-} \text {decay mode }
$$

$-\mathrm{M}=3871.68 \pm 0.17 \mathrm{MeV} / \mathrm{c}^{2}$ $M \simeq M\left(D^{0}\right)+M\left(D^{* 0}\right)$
$-\Gamma<1.2 \mathrm{MeV} / \mathrm{c}^{2}$
$-\mathrm{J}^{\mathrm{PC}}=1^{++}$by LHCb using $\mathrm{B}^{+} \rightarrow \mathrm{X}(3872) \mathrm{K}^{+}, \mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$

- Nature is still unclear, possible interpretations:
- $\mathrm{D}^{0} \mathrm{D}^{* 0}$ molecula
- conventional $\chi_{\mathrm{c} 1}$ (2P)
- tetraquark
- ...
- and their mixtures
$\eta_{\mathrm{c} 2}\left(1^{1} \mathrm{D}_{2}\right)$ is now ruled out
$\chi_{\mathrm{c} 1}\left(2^{3} \mathrm{P}_{1}\right)$ possible but disfavored by mass
charmonium spectrum

Radiative decay of X(3872)

$\mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma$ decay allows to better understand the nature of $\mathrm{X}(3872)$
Predictions for the ratio $\quad R_{\psi \gamma} \equiv \frac{\mathcal{B}(\mathrm{X}(3872) \rightarrow \psi(2 S) \gamma)}{\mathcal{B}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)}$

Model	Prediction
charmonium, $\chi_{\mathrm{c} 1}(2 \mathrm{P})$	$1.2-15$
molecula, DD^{*}	$(3-4) \times 10^{-3}$
mixture $\chi_{\mathrm{c} 1}(2 \mathrm{P})+\mathrm{DD}^{*}$	$0.5-5$

LHCb-PAPER-2014-008, Nucl.Phys B 886 (2014) 665

PRL 107 (2011) 091803

BaBar vs Belle descripancy

events		significance	
$\psi(2 \mathrm{~S}) \gamma$	$\mathrm{J} / \psi \gamma$	$\psi(2 \mathrm{~S}) \gamma$	$\mathrm{J} / \psi \gamma$
25.4 ± 7.3	23.0 ± 6.4	3.6σ	3.5σ
$5.0_{-11.0}^{+11.9}$	$30.0_{-7.4}^{+8.2}$	$\mathbf{0 . 4 \sigma}$	4.9σ

Radiative decay of X(3872) in LHCb

Projections of the 2D fit to $\mathrm{M}(\psi(2 \mathrm{~S}) \gamma \mathrm{K})$ and $\mathrm{M}(\psi(2 \mathrm{~S}) \gamma$)

LHCb-PAPER-2014-008, Nucl.Phys B 886 (2014) 665

The significance was estimated with simplified simulation

Radiative decay of $X(3872)$ in LHCb

$$
R_{\psi \gamma}=\frac{\mathcal{B}(\mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma)}{\mathcal{B}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)}=2.46 \underset{\text { (stat) }}{ \pm 0.64 \pm} \underset{\text { (syst) }}{0.29}
$$

	events		significance	
	$\psi(2 \mathrm{~S}) \gamma$	$\mathrm{J} / \psi \gamma$	$\psi(2 \mathrm{~S}) \gamma$	$\mathrm{J} / \psi \gamma$
BaBar	25.4 ± 7.3	23.0 ± 6.4	3.6σ	3.5σ
Belle	$5.0_{-11.0}^{+11.9}$	$30.0_{-7.4}^{+8.2}$	0.4σ	4.9σ
LHCb	36.4 ± 9.0	591 ± 48	4.4σ	12σ

LHCb-PAPER-2014-008,

Nucl.Phys B 886 (2014) 665
\checkmark The LHCb results are consistent with, but more precise than, the BaBar and Belle results
\checkmark The results are not consistent with the expectations for pure molecular X(3872)
$\checkmark \mathrm{X}(3872)$ is likely a mixture of a $\chi_{\mathrm{c} 1}\left(2^{3} \mathrm{P}_{1}\right)$ charmonium state and of $\mathrm{D}^{0} \mathrm{D}^{* 0}$ molecule

Z(4430)-

Phys. Rev.Lett. 100 (2008) 142001

Observation of a resonance-like structure in the $\pi^{ \pm} \psi^{\prime}$ mass distribution in exclusive $B \rightarrow K \pi^{ \pm} \psi^{\prime}$ decays
The observation could be interpreted as the first evidence for the existence of mesons beyond the traditional quark-anti-quark model

Belle Discovers a New Type of Meson

1D $\mathrm{M}\left(\pi^{ \pm} \psi(2 S)\right)$ mass fit K^{*} veto region
$M(Z)=4433 \pm 4 \pm 2 \mathrm{MeV}$
$\Gamma(\mathrm{Z})=45 \begin{array}{cc}+18 & +30 \\ -13 & -13\end{array} \mathrm{MeV}$
significance 6.5σ

Z(4430)- in BaBar and Belle

Harmonic moments of K*s (2D)
reflected to $\mathrm{M}\left(\pi^{ \pm} \psi(2 S)\right)$

Almost model independent approach to $\mathrm{K}^{*} \rightarrow \mathrm{~K} \pi^{-}$backgrounds
BaBar did not confirm Z(4430)- in B sample comparable to Belle
Did not numerically contradict the Belle results $\mathrm{BR}\left(\mathrm{B}^{0} \rightarrow \mathrm{Z}^{-} \mathrm{K}^{+}\right) \times \mathrm{BR}\left(\mathrm{Z}^{-} \rightarrow \pi^{-} \psi(2 \mathrm{~S})\right)<3.1 \times 10^{-5}$

4D amplitude fit
K* veto region

Model dependent approach to $\mathrm{K}^{*} \rightarrow \mathrm{~K} \pi$ backgrounds
$J^{P}=1^{+}$prefered by $>3.4 \sigma$
$\mathrm{M}(\mathrm{Z})=4485_{-22}^{+22}+{ }_{-11}^{+28} \mathrm{MeV}$
$\Gamma(\mathrm{Z})=200{ }_{-46}^{+41} \begin{gathered}+26 \\ -35\end{gathered} \mathrm{MeV}$ significance 6.4σ (5.6σ with sys.)

Z(4430)- state in LHCb

An order of magnitude larger signal statistics than in Belle or BaBar thanks to hadronic production of b-quarks at LHC

Even smaller non-B background than at the $\mathrm{e}^{+} \mathrm{e}^{-}$experiments thanks to excellent performance of the LHCb detector (vertexing, particle identification)

Z(4430)- state in LHCb

LHCb uses both approaches

Belle 4D

- data

4D model dependent amplitude analysis

Moments analysis

No assumptions about K* contributions except for the maximal J
K^{*} reflection do not describe the $\mathrm{Z}(4430)^{-}$region
This approach does not allow to define $\mathrm{Z}(4430)^{-}$ parameters

4D fit method

The χ^{2} p-value $<2 \times 10^{-6}$ (Z excluded) The $\chi^{2} \mathrm{p}$-value $=12 \%\left(\right.$ with $\left.Z(4430)^{-}\right)$

Z(4430)- parameters in LHCb

Excellent		
Eonsistency	LHCb	Belle
$M(Z)[\mathrm{MeV}]$	$4475 \pm 7_{-25}^{+15}$	$4485 \pm 22_{-11}^{+28}$
$\Gamma(Z)[\mathrm{MeV}]$	$172 \pm 13_{-34}^{+37}$	200_{-46}^{+41+35}
$f_{Z}[\%]$	$5.9 \pm 0.9_{-3.3}^{+1.5}$	$10.3_{-3.5-2.3}^{+3.0+4.3}$
$f_{Z}^{I}[\%]$ (with interterences) Significance	$16.7 \pm 1.6_{-5.2}^{+2.6}$	
	$>13.9 \sigma$	$>5.2 \sigma$

(new large systematic effect included by LHCb)
spin parity

Likelihood-ratio test to discriminate between 0^{-}and 1^{+} hypotheses

LHCb-PAPER-2014-014 arXiv: 1404.1903

Including systematic variations
Rejection level relative to 1^{+}

Disfavored J^{P}	LHCb	Belle
$0-$	9.7σ	3.4σ
$1-$	15.8σ	3.7σ
$2+$	16.1σ	5.1σ
$2-$	14.6σ	4.7σ

$\mathrm{J}^{\mathrm{P}}=1^{+}$now established beyond any doubt

Z(4430)- in LHCb

Argand diagram

Replace the Breit-Wigner amplitude for $Z(4430)^{-}$by 6 independent amplitudes in $\mathrm{M}^{2}\left(\psi(2 \mathrm{~S}) \pi^{-}\right)$bins in its peak region

Observe a fast change of phase crossing maximum of magnitude

Expected behaviour for a resonance
arXiv: 1404.1903

First time ever the resonant character of the four-quark candidate has been demonstrated this way!

More than one $Z(4430)^{-} \rightarrow \psi(2 S) \pi^{-}$

One more Z resonance may be included
Argand diagram studies are inconclusive

$$
\mathrm{M}(\mathrm{Z})=4239 \pm 18_{-10}^{+45} \quad \mathrm{MeV}
$$

$$
\Gamma(\mathrm{Z})=200 \pm 47{ }_{-74}^{+108} \quad \mathrm{MeV}
$$

Need more data to clarify!

Excitement

Spectroscopy in light quark sector

Scalar mesons in general (particular $\mathrm{f}_{0}(980)$) are not well understood Recently, LHCb observed two channels $B_{s} \rightarrow J / \psi f_{0}(980)$ and $B_{d} \rightarrow J / \psi f_{0}(500)$ Many possibilities: $q \bar{q}, q \bar{q} q \bar{q}$, mixtures...

When $\mathrm{f}_{0}(500)$ and $\mathrm{f}_{0}(980)$ are considered as $q \bar{q}$ states there is the possibility of their being mixtures of light and strange quarks

$$
\begin{aligned}
\left|f_{0}(980)\right\rangle & =\cos \varphi_{m}\langle s \bar{s}\rangle+\sin \varphi_{m}|n \bar{n}\rangle \\
\left|f_{0}(500)\right\rangle & =-\sin \varphi_{m}|s \bar{s}\rangle+\cos \varphi_{m}|n \bar{n}\rangle, \\
\text { where }|n \bar{n}\rangle & \equiv \frac{1}{\sqrt{2}}(|u \bar{u}\rangle+|\bar{d}\rangle) .
\end{aligned}
$$

When these states are viewed as $q \bar{q} q \bar{q}$ states the wave functions becomes

$$
\begin{aligned}
\left|f_{0}(980)\right\rangle & =\frac{1}{\sqrt{2}}(|[s u][\bar{s} \bar{u}]\rangle+|[s d][\bar{s} \bar{d}]\rangle) \\
\left|f_{0}(500)\right\rangle & =|[u d][\bar{u} \bar{d}]\rangle .
\end{aligned}
$$

phase space
Observable: factors

$$
\tan ^{2} \varphi_{m} \equiv r_{\sigma}^{f}=\frac{\mathcal{B}\left(\bar{B}^{0} \rightarrow J / \psi f_{0}(980)\right)}{\mathcal{B}\left(\bar{B}^{0} \rightarrow J / \psi f_{0}(500)\right)} \frac{\Phi(500)}{\Phi(980)}, \quad \begin{aligned}
& \text { for pure } \\
& \text { tetraquark } \\
& \text { states } \sim 1 / 2
\end{aligned}
$$

Amplitude analysis $B_{d} \rightarrow J / \psi \pi^{+} \pi^{-}$

Branching fractions for each channel

Similar to the $\mathrm{Z}(4430)$: 4 D analysis No evidence for $\mathrm{J} / \psi \pi^{+}$
Best fit model does not require $\mathrm{f}_{0}(980)$ component

R	$\mathcal{B}\left(\bar{B}^{0} \rightarrow J / \psi R, R \rightarrow \pi^{+} \pi^{-}\right)$
$\rho(770)$	$\left(2.50 \pm 0.10_{-0.15}^{+0.18}\right) \times 10^{-5}$
$f_{0}(500)$	$\left(8.8 \pm 0.5_{-1.5}^{+1.1}\right) \times 10^{-6}$
$f_{2}(1270)$	$\left(3.0 \pm 0.3_{-0.3}^{+0.2}\right) \times 10^{-6}$
$\omega(782)$	$\left(2.7_{-0.6-0.5}^{+0.8+0.7}\right) \times 10^{-7}$
$\rho(1450)$	$(4.6 \pm 1.1 \pm 1.9) \times 10^{-6}$
$\rho(1700)$	$(2.0 \pm 0.5 \pm 1.2) \times 10^{-6}$

The measured upper limit on $r^{\mathrm{f}}{ }_{\sigma}$ deviates from the tetraquark prediction $(1 / 2)$ by 8σ

Λ_{b} production

The relative production rates of beauty hadrons are described by the fragmentation fractions f_{u}, f_{d}, f_{s}, f_{c}, and $f_{\Lambda_{b}}$ which describe the probability that a b quark fragments into a B_{q} or a Λ_{b} The kinematic dependences of the relative production rates $f_{\Lambda_{b}} / f_{d}$ of Λ_{b} baryons and B_{d} mesons are measured using $\Lambda_{b} \rightarrow \Lambda_{\mathrm{c}} \pi^{+}$and $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{D}^{+} \pi^{-}$decays

$$
\begin{gathered}
\frac{f_{\Lambda_{b}}}{f_{d}}(x)=\frac{B R\left(\bar{B}_{d}^{0} \rightarrow D^{+} \pi^{-}\right)}{B R\left(\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}\right)} \times \frac{B R\left(D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}\right)}{B R\left(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}\right)} \times R(x) \\
R(x)=\frac{N_{\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}}(x)}{N_{\bar{B}_{d}^{0} \rightarrow D^{+} \pi^{-}}(x)} \times \frac{\varepsilon_{\bar{B}_{0}^{0} \rightarrow t^{+} \pi^{+}}(x)}{\varepsilon_{\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{-}}(x)}
\end{gathered}
$$

Λ_{b} production

Dependences of $f_{\Lambda_{b}} / f_{d}$ on the p_{T} and η of the beauty hadrons

\checkmark The p_{T} dependence is accurately described by an exponential function
\checkmark The ratio of fragmentation fractions $\mathrm{f}_{\Lambda_{\mathrm{b}}} / \mathrm{f}_{\mathrm{d}}$ decreases by a factor of three in the range $1.5<\mathrm{p}_{\mathrm{T}}<40 \mathrm{GeV} / \mathrm{c}$
\checkmark The ratio of fragmentation fractions $\mathrm{f}_{\Lambda_{\mathrm{b}}} / \mathrm{f}_{\mathrm{d}}$ versus η is described by a linear dependence in the range $2<\eta<5$

Production of $\chi_{b}(1 P, 2 P, 3 P)$ state

LHCb-PAPER-2014-031
LHCb preliminary

	$\sqrt{s}=7 \mathrm{TeV}$	$\sqrt{s}=8 \mathrm{TeV}$
$N_{\Upsilon(1 \mathrm{~S})}$	283252 ± 592	659599 ± 906
$N_{\Upsilon(2 \mathrm{~S})}$	87541 ± 263	203277 ± 558
$N_{\Upsilon(3 \mathrm{~S})}$	50419 ± 289	115271 ± 435

$$
\mathrm{M} \chi_{\mathrm{b}}\left(3 \mathrm{P}_{1}\right)=10511.3 \pm 1.7 \pm 2.4 \mathrm{MeV} / \mathrm{c}^{2} \begin{aligned}
& \text { Most precise } \\
& \text { measurement }
\end{aligned}
$$

$\chi_{b}(n P)$ to $\Upsilon\left(n^{\prime} S\right)$ feeddown fractions

Fraction of Υ mesons originating from χ_{b} radiative decays

$\chi_{\mathrm{b}}(3 \mathrm{P})$ to $\Upsilon(3 \mathrm{~S})$ feed-down has been often neglected when comparing data and theory on $\Upsilon(3 \mathrm{~S})$ This measurements demonstrates its importance

The measurement of the $\Upsilon(3 S)$ production fraction due to radiative $\chi_{b}(3 \mathrm{P})$ decays is performed for the first time

conclusions

$\checkmark \mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma$ decay now established at 4.4σ
$\bullet \operatorname{BR}(\mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma) / \mathrm{BR}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)$ inconsistent with pure molecular interpretation of X(3872)
\checkmark Existence confirmation of Z(4430)- with $>13.9 \sigma$

- quantum numbers determination $\mathrm{J}^{\mathrm{P}}=1^{+}$

LHCb-PAPER-2014-014

- resonant behaviour observed
- the charge and spin-party make $\mathrm{Z}(4430)^{-}$unambiguous four-quark candidate
\checkmark No evidence for $\mathrm{f}_{0}(980)$ in $\mathrm{B}_{\mathrm{d}} \rightarrow \mathrm{J} / \psi \pi+\pi$ - decays
- resonance production $f_{0}(980)$ as a tetraquark state ruled out at 8σ

LHCb-PAPER-2014-012
arXiv 1404.5673
\checkmark New interesting results on $\chi_{b}(3 \mathrm{P})$ production rate:

- $\chi_{b}(3 \mathrm{P})$ to $\Upsilon(3 \mathrm{~S})$ feed-down is large
\checkmark The kinematic dependences of the relative production rates $f_{\Lambda_{b}} / f_{d}$ of Λ_{b} baryons and B_{d} mesons are measured

LHCb-PAPER-2014-004, arXiv 1405.6842

