Production and Decays of Heavy Flavours in ATLAS

Vincenzo Canale

Università di Napoli "Federico II" and INFN

Alessandro Cerri

University of Sussex

University of Sussex

Xth Rencontres du Vietnam – Flavour Physics Conference

ICISE, Quy Nhon, VN, July 27 – August 2, 2014

Outlook

A. Introduction:

- 1) General framework
- 2) Experimental aspects

B. HF Production:

- 1) Quarkonium production
- 2) $\psi(2s), \chi_{cj}$ and W+J/ ψ production
- 3) Y(ns) production
- 4) Open states: B⁺ production

C. HF Decay:

- 1) Observation of $B_c^* \rightarrow B_c^+ \pi^+ \pi^-$
- 2) Measurement of BR(B⁺ $\rightarrow \chi_c + K^+$)
- 3) Parity violation in $\Lambda_b \rightarrow J/\psi \Lambda_0$
- 4) Study of the decay $B_d \rightarrow K^{*0}(K\pi) \mu^+\mu^-$

D. Conclusions

All results available at: https://twiki.cern.ch/twiki/bin/ view/AtlasPublic/ BPhysPublicResults

A.1 General framework

Heavy Quark (HQ) production \Rightarrow crucial QCD test:

- Color Singlet Model (CSM) improvement with NLO, NNLO* calculations;
- Color Octet Model (NRQCD) with LO, NLO;
- Other models: CEM and k_{T} Factorization

Theory \Leftrightarrow experiments: LHC as high p_{T} probe

Degree of Polarization (spin alignment)

• important for data correction: (25–30)% variation at low p_{T}

LHC: large b statistics \Rightarrow new spectroscopy, test of SM, possible evidence for physics BSM (e.g. Rare processes / small amplitudes) 07/29/14 AC, V. Canale: Production and decays of heavy flavors in ATLAS

- Muon Spectrometer (MS): triggering $|\eta|{<}2.4$ and precision tracking $|\eta|{<}2.7$
- Inner Detector (ID): Silicon Pixel and Strips (SCT)with Transition Radiation Tracker (TRT), $|\eta| < 2.5$
- EM calorimeter

Trigger: mainly di-muon p_T^{μ} thresholds (4 – 4) GeV or (4-6) GeV

vs = 7 TeV

L dt ~ 2.3 fb⁻¹

Several results from 2011 data $\mathcal{L} \approx 4.57 \text{ fb}^{-1}, \ \sqrt{s} = 7 \ TeV$

AC, V. Canale: Production and decays of heavy flavors in ATLAS

m_{uu} [GeV]

Mass reconstruction \Rightarrow key tool in HF @ ATLAS:

- $(\mu^+\mu^-) \Rightarrow J/\psi, Y$
- $(J/\psi + trks) \Rightarrow \Psi$, exclusive B

Signal ~ 96 k

3.72

Peak $\sigma \sim 5.6$ MeV

 $m_{J/\psi\pi\pi}$ [GeV]

50

5400

5500

- $\Delta m = m(\mu^+\mu^-\gamma) m(\mu^+\mu^-)$ "resolution"
- reconstr. $\varepsilon_{trk} = 99\%$
- $(\sigma_{pT} / p_T) \approx 0.05$ up to 60 GeV
- σ_m~(50-100)MeV

100

200

300

400

500

 $m(B_\pi\pi)-m(B_\pi)-2m(\pi)$ [MeV]

• high S/B Events / 5.5 We 1800 1600 1400 1200 1800 ATLAS Entries / 12 MeV - Total Fit GeV) |y| < 0.75 is = 7 TeV 1600 L dt = 4.9 fb⁻¹ ATLAS $10 \le p_{\tau}^{J/\psi} < 30 \text{ GeV}$ ATLAS_Preliminary ---Signal --- Data ----- B⁰_d→J/ψK^{*0} Background 1.8⊟ vs = 7 TeV $|y^{J/\psi}| < 0.75$ √s=7TeV, Ldt=2.1fb⁻¹ Weighted $\mu^{+}\mu^{-}\gamma$ Candidates / (0.01 $Ldt = 4.5 \text{ fb}^{-1}$ Data ----- Background 0.35 - Fit J/w Signal ---- Background 0.3 1000 1.2 📕 Signal χ Signal ~ 2.8 M 0.25 X_{cJ} Prompt Signal χ 800 Peak σ ~ 37 MeV 1.0 Non-prompt Signal χ J/ψ 0.2 600 0.8 Prompt Signal χ And the state of the second se 0.15 400 Non-prompt Signal 0.6 0.1 200 0.4 0.05 0.2 بالتسار 0.0^上 0.2 28 2.9 3.1 3.2 3.3 TITT 0.3 0.4 0.5 0.6 m_{uu} [GeV] $m(\mu^+\mu^-\gamma) - m(\mu^+\mu^-)$ [GeV] 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 B. Mass [GeV] 300r Events / 10 MeV ATLAS Entries / 4 MeV 250^{-1} vs = 7 TeV, L dt = 4.6 fb⁻¹ |y| < 0.75 $Q_{B,\pi\pi} = 288 \pm 5 \text{ MeV}$ ATLAS Preliminary 18-ATLAS - Data $\sigma_{B,\pi\pi} = 18 \pm 4 \text{ MeV}$ Data 2011 √s=7TeV, Ldt=2.1fb⁻¹ $\Lambda_{\rm b}^0 + \overline{\Lambda}_{\rm b}^0$ Fit Ldt = 4.9 fb Fitted model $N_{B,\pi\pi} = 22 \pm 6$ ----- Background ----- Signal 200 = 7 TeV --- B⁰ bkg ψ(2S) Signal Data Comb. bkg Wrong-charge combinations 150 Λ_{h}^{0} B^* 20 100

3.62 3.64

2s

3.66 3.68 3.7

AC, V. Canale: Production and decays of heavy flavors in ATLAS

5700

5800

 $m_{I/\mu(\Lambda^{0}(\overline{\Lambda}^{0}))}$ [MeV]

5900

5600

600

700

0.7

Excellent tracking & vertexing \Rightarrow primary & secondary vertices

B.1 Quarkonium production

P-states: just below open charm threshold \Rightarrow reduce feed-down

$$\frac{d^{2}\sigma(pp \rightarrow Q + X)}{dp_{T}dy} \cdot Br(Q \rightarrow \mu\mu) = \frac{N_{corr}^{Q \rightarrow \mu\mu}}{\mathcal{L} \cdot \Delta p_{T} \cdot \Delta y}$$
Signal yield: unbinned
maximum likelihood
fits $\Rightarrow \sigma_{stat} \sim few \%$
 \mathcal{L} : integrated luminosity corresponding to the sample
 $\Delta p_{T}(y)$: interval bin of the differential variable
correction weight: $w = (\epsilon_{trk} \cdot \epsilon_{\mu} \cdot \epsilon_{trig.} \cdot \mathcal{A})^{-1}$
 $\epsilon(p_{T}^{(\mu)}, \eta^{(\mu)})$ efficiencies \rightarrow data driven methods
to reduce uncertainties (e.g. tag and probe)
 $A(p_{T}, y)$ acceptance corrections [recover full
phase space, esp. @ low P_{T}] \rightarrow simulation
Total systematic uncertainty $\sim (5-10)\%$
 $q_{12}^{20} \xrightarrow{ATLAS-CONF-2013-094}{(y < 0.75} \xrightarrow{Trotal weight}{(y < 0.75} \xrightarrow{Trotal wei$

07/29/14

AC, V. Canale: Production and decays of heavy flavors in ATLAS

Non-prompt:

- ψ(2s) @ low pT agrees w FONLL & NLO, model improvements needed @ higher pT
- χ_{cJ} generally in good agreement, but limited pT range

AC, V. Canale: Production and decays of heavy flavors in ATLAS

C.2 Measurement of the BR(B⁺ $\rightarrow \chi_c + K^+$)

C.3 Parity violation from $\Lambda_b \rightarrow J/\psi \Lambda_0$

 $w(\cos\theta) = \frac{1}{2} (1 + \alpha_b \cdot P \cdot \cos\theta)$ Violation not maximal $\Rightarrow |\alpha| < 1$

Λ helicity frame

The full angular probability density function (PDF) of the decay angles $\Omega = (\theta, \phi, \theta_1, \phi_1, \theta_2, \phi_2)$ is [15,17,18]

$$w(\Omega, \vec{A}, P) = \frac{1}{(A - \sqrt{3})^3} \sum_{j=1}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\Omega), \quad (3)$$

$$\langle F_i \rangle = \frac{1}{N^{\text{data}}} \sum_{n=1}^{N^{\text{data}}} F_i(\Omega_n) \\ \langle F_i \rangle^{\text{expected}} = \sum_j f_{1j}(\vec{A}) f_{2j}(\alpha_{\Lambda}) C_{ij}, \quad \left\{ F_i \rangle^{\text{expected}} = \langle F_i \rangle, \\ \chi^2 = \sum_i \sum_j (\langle F_i \rangle^{\text{expected}} - \langle F_i \rangle) V_{ij}^{-1}(\langle F_j \rangle^{\text{expected}} - \langle F_j \rangle), \\ \rangle = -0.282 \pm 0.021, \\ \rangle = -0.044 \pm 0.017, \\ \rangle = 0.001 \pm 0.010, \\ \rangle = 0.019 \pm 0.009, \\ \rangle = -0.002 \pm 0.009, \\ |a_+| = 0.17^{+0.12}_{-0.17}, \\ |a_-| = 0.59^{+0.06}_{-0.05}, \\ |b_+| = 0.79^{+0.04}_{-0.05}, \\ |b_-| = 0.08^{+0.13}_{-0.08}. \quad econsistent with \alpha_{\text{LHCB}} = 0.05 \pm 0.17 \pm 0.0 \\ \bullet \alpha_{\text{HQET}} = 0.78 \text{ and } \alpha_{\text{pQCD}} = -(0.14 \div 0.17) \\ \text{AC, V. Canale: Production and decays of heavy flavors in ATLAS} \\ \end{cases}$$

7

C.4 Study of $B_d \rightarrow K^{*0}(K\pi) \mu^+\mu^-$

- b \rightarrow s |+ |- transition
- loop-mediated in SM \Rightarrow BR $\approx 1.1 \ 10^{-6}$
- sensitive to BSM contribution
- lepton forward-backward asymmetry A_{FR}
- K^{*0} longitudinal polarisation fraction F₁

- 3 angles (θ_1 , θ_K , ϕ) and q^2
- φ symmetry, then integrate on φ
- alternative integration on $\theta_{\rm L}$ or $\theta_{\rm K}$

fit to angular distribution \Rightarrow (A_{FB},F_L) in q²-intervals

- statistical uncertainty dominates \Rightarrow improve with ${\mathscr L}$
- agreement with other experiments and SM predictions

AC, V. Canale: Production and decays of heavy flavors in ATLAS

Conclusion

- High precision production measurements
 - quarkonium (J/ ψ , ψ_{2s} , χ_{cj} , Y_{ms} ,)
 - open state (B⁺)
 - LHC: new kinematical regions (e.g. high p_T) \Rightarrow test predictions of different QCD tools
- ATLAS \rightarrow
 - \rightarrow evidence for new states
 - \rightarrow decay properties of heavy flavour
- Expect to exploit full run-I and future run-II to probe new interesting phenomena in heavy flavour production
 - polarization
 - double quarkonium
 - associated production with W, Z etc...
 - decays to test SM and look for BSM effects (e.g. rare or suppressed decays)