CMS Upgrade

and its impact on Flavour Physics
Motivations

- LHC will undergo sizeable upgrades in the near and in longer terms
 - Luminosity increase
 - Pile-up and Background increase

- Purpose of CMS upgrades:
 - maintain / improve wrt present performances, despite the more difficult operating conditions
 - ensure radiation resistance, and easy replacements during short shutdown

- Major and minor interventions
 - mostly aimed at High-p_T Physics
 - beneficent for B-Physics as well

Increased trigger rate and data-event size

FOCUS for this talk
2015: RUN with smaller beam pipe, useful for next upgrade
Upgrade Plan

2015: RUN with smaller beam pipe, useful for next upgrade

LS2: replace pixels to cope with luminosity increase to $2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
Upgrade Plan

2015: RUN with smaller beam pipe, useful for next upgrade

LS2: replace pixels to cope with luminosity increase to $2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

LS2: replace tracker to cope with luminosity increase to $5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ and ageing
PIXEL Upgrade

Main features

- four layers, inner closer to interaction region
- new readout, reduce data loss
- new cooling, lighter mechanical support, electronic & connections out of Tk volume
- overall easier access

Exploit smaller beam pipe
Increase precision and redundancy

Reduce material

Operation, replacement
Upgraded Pixel Performance

- Main benefit at low p_T
- Helpful for B-Physics

Impact Parameter Resolution, xy

Impact Parameter Resolution, z
Upgraded Tracking

- Radiation hardness
- Granularity
 - resolve 150-200 collisions per bunch, with few % occupancy
- Reduce material (nuclear interaction, γ conversion)
- Repare modules at short stops
- Provide L1 trigger
Upgraded Tracking

- Radiation hardness
- Granularity
 - resolve 150-200 collisions per bunch, with few % occupancy
- Reduce material (nuclear interaction, γ conversion)
- Repare modules at short stops
- Provide L1 trigger
- Measure (high) p_T on board the modules:
 - two close modules red-out by one single chip

Inner : Pixel+Strip (PS)
Outer : Strip+Strip (2S)
Upgraded Tracker Layout & Performance

- Sizeable reduction of material
- Sizeable Improvement in p_T resolution
Benchmark: $B \to \mu\mu$

Hypothesis:

- L1 track-Trigger allows same L1 thresholds as now ($p_T(\mu) > 3$ GeV)
- Efficiency:
 - pileup: $\varepsilon(\mu\mu) \downarrow 30\%$ (isolation)
 - μ reco & trigger: $\varepsilon(\mu\mu) \downarrow 2 \times 5\%$
- σ(syst):
 - f_s/f_u: 5% (now) $\to 3\%$
 - Normalization ($B^+ \to \psi K^+$): $3\%^{(BR)} \oplus 5\% / \sqrt{L_{INT}} / 20 \text{ fb}^{-1}$ (Rate)
 - Peaking Backround: $10\%^{(BR)} \oplus 50\% / \sqrt{L_{INT}} / 20 \text{ fb}^{-1}$ (Control Sample)
 - Semileptonic Background: $20\%^{(BR)} \oplus 50\% / \sqrt{L_{INT}} / 20 \text{ fb}^{-1}$ (Control Sample)
- Resolution:
 - $\downarrow 1.6$ (Barrell) $\downarrow 1.2$ (Forward)
 - Ignore improvement due to 1st pixel layer
$B \rightarrow \mu\mu$: expectations

- **3000 fb$^{-1}$**: statistic is not an issue
- **Use just barrel events**, resolution is enough to separate $B_d/B_s/B\rightarrow hh'$
- $Br\ (B_d) > 5 \sigma$

<table>
<thead>
<tr>
<th>L (fb$^{-1}$)</th>
<th>No. of B^0_s</th>
<th>No. of B^0</th>
<th>$\delta B/B(B^0 \rightarrow \mu^+\mu^-)$</th>
<th>$\delta B/B(B^0 \rightarrow \mu^+\mu^-)$</th>
<th>B^0 sign.</th>
<th>$\delta B(B^0 \rightarrow \mu^+\mu^-)$</th>
<th>$\delta B(B^0 \rightarrow \mu^+\mu^-)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>16.5</td>
<td>2.0</td>
<td>35%</td>
<td>>100%</td>
<td>0.0–1.5 \sigma</td>
<td>>100%</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>144</td>
<td>18</td>
<td>15%</td>
<td>66%</td>
<td>0.5–2.4 \sigma</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>433</td>
<td>54</td>
<td>12%</td>
<td>45%</td>
<td>1.3–3.3 \sigma</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>2096</td>
<td>256</td>
<td>12%</td>
<td>18%</td>
<td>5.4–7.6 \sigma</td>
<td>21%</td>
<td></td>
</tr>
</tbody>
</table>
Backup: current tracker layout
Backup: Hardware Track Trigger

- Subdivide tracker into trigger towers
- $8(r-\phi) \times 6(r-z)$ trigger sectors (some 10% overlapping)
 - Each sector ~ 200 stubs on average; tails up to ~ 500 stubs/event in 140 evts pileup+ttbar
 - About 600 Gb/s per one trigger tower

- Send data to Track-finding processors
- Full mesh ATCA shelves
 - "40G" full-mesh backplane on 14 slots = 7.2 Tb/s
 - time multiplexing data transfer from a set of receiving boards to pattern recognition and track finding engine
 - $O(10)$ time multiplexed at the shelf level