The Belle II Experiment

Doris Yangsoo Kim Soongsil University

On behalf of the Belle II Experiment

July 29, 2014

Flavor Physics Conference Xth Rencontres du Vietnam

Doris Y Kim, Soongsil University

Outline

- Introduction: The Super B Factory Project
- SuperKEK
- Belle II: The Detector
- Belle II: Offline Computing & Software
- Summary

Introduction

The Super B Factory Project

Physics at a Super B Factory

- Precision test of CKM unitarity matrix
 - More data \rightarrow Over-constraining of unitarity triangle
 - Search for deviations from the Standard Model
- There is a good chance to see new phenomena:
 - CP Violation from the new physics .
 - Lepton flavor violations in τ decays.
 - Search for the charged Higgs boson in $B \rightarrow \tau \nu$, D(*) $\tau \nu$ decays.
 - New particles affecting the flavor changing neutral current.
 - More topics: CP Violation in charm mesons, new hadrons, ...

Doris Y Kim, Soongsil University

Examples of Belle II Expectation

Observable	SM theory	Current measurement	Belle II *
Observable		(early 2013)	$(50 {\rm ab}^{-1})$
$S(B \to \phi K^0)$	0.68 0.56 ± 0.17		± 0.018
$S(B \to \eta' K^0)$	0.68	0.59 ± 0.07	± 0.011
$\alpha \text{ from } B \to \pi \pi, \rho \rho$		$\pm 5.4^{\circ}$	$\pm 1^{\circ}$
$\gamma \text{ from } B \to DK$		$\pm 11^{\circ}$	$\pm 1.5^{\circ}$
$S(B \to K_S \pi^0 \gamma)$	< 0.05	-0.15 ± 0.20	± 0.035
$S(B o ho \gamma)$	< 0.05	-0.83 ± 0.65	± 0.07
$A_{\rm CP}(B \to X_{s+d} \gamma)$	< 0.005	0.06 ± 0.06	± 0.005
$A^d_{ m SL}$	-5×10^{-4}	-0.0049 ± 0.0038	± 0.001
$\mathcal{B}(B \to \tau \nu)$	$1.1 imes 10^{-4}$	$(1.64 \pm 0.34) \times 10^{-4}$	$\pm 3\%$
$\mathcal{B}(B \to \mu \nu)$	4.7×10^{-7}	$< 1.0 imes 10^{-6}$	$\gg 5\sigma$
$\mathcal{B}(B \to X_s \gamma)$	3.15×10^{-4}	$(3.55\pm0.26) imes10^{-4}$	$\pm 6\%$
$\mathcal{B}(B \to K^{(*)} \nu \overline{\nu})$	$3.6 imes 10^{-6}$	$< 1.3 imes 10^{-5}$	$\pm 30\%$
$\mathcal{B}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 6 \mathrm{GeV^2})$	$1.6 imes 10^{-6}$	$(4.5 \pm 1.0) \times 10^{-6}$	$\pm 0.10 \times 10^{-6}$
$A_{\rm FB}(B^0 \to K^{*0}\ell^+\ell^-)$ zero crossing	7%	18%	5%
$ V_{ub} $ from $B \to \pi \ell^+ \nu \ (q^2 > 16 \mathrm{GeV^2})$	9% ightarrow 2%	11%	2.1%

Courtesy: Youngjoon Kwon @ Beauty2014 Snowmass (arXiv:1311.1076) + BPAC 2014 update(*)

SuperKEKB

Luminosity Increase by a Factor 40

• "Nano-Beam" scheme of Pantaleo Raimondi for SuperB.

SuperKEKB Upgrade Status

Courtesy: Ken-ichi Kanazawa @ ICHEP2014

Belle II: The Detector

Vertex Detector

•Slant structure for SVD layers

512 x 250 pixels 60 x 50 μm² (L1) 85 x 50 μm² (L2)

- Beampipe r = 10 mm
- DEPFET (Pixels): Emphasis on low material budget. Sensor and assembly module production finished. Final electronics being tested.

Layer 1 & 2 r = 14 & 22 mm

 σ ~ 15 $\mu m, ~time~resolution$ 20 μs

• DSSD (Double sided silicon detectors) Mass production will start August 2014.

Layer 3 to 6 r = 38, 80, 115, & 140 mm

Time resolution 3 ns

PXD + SVD: Use SVD to reduce PXD data size.
 Decay position resolution 10 μm
 VXD only tracking is possible.

256 x 250 pixels

55 x 50 µm² (L1) 70 x 50 µm² (L2)

Central Drift Chamber

 $\sigma_p / p \sim 0.3\% + 0.1\% \times p(GeV)$ in B = 1.5T $\sigma(dE/dx) \sim 6\%$

- Inner chamber: Small-cell to counter high background.
- Wiring is finished in June 2014
- Currently checking gas leak

July 29, 2014

Doris Y Kim, Soongsil University

Particle Identification (TOP)

TOP (Time of Propagation counter): A RICH type detector (σ < 100ps)

A GEANT4 event display of a 2 GeV pion and kaon interacting in a TOP quartz bar.

- Successful prototype in 2013.
- PMT : Mass production is completed. Inspection on-going.
- FEE: High-speed waveform sampling ASICs. Final electronics production and validation starts late 2014.
- Quarz optics: Mass production is ongoing.
- Quartz bar box: Al honeycomb panels +PEEK material to support the optics.

Particle Identification (ARICH) Testbeam: K/π separation = 5.5 σ

Aerogel Ring Image Cherenkov Detector

for forward endcap

1.5 2 2.5 3 3.5 4 4.5 5

efficiency for kaons

p(GeV/c)

- Proximity focusing due to limited space
 - HAPD: Mass production started last September.
 - Readout: ASIC production completed. Frontend board design being finalyzed.
 - Radiator: Mass production of aerogel finished. Inspection on-going.

-1

0.5

1

EM Calorimeter

• Barrel

- CsI(TI) crystals reused. New electronics with 2MHz wave form sampling. All 6624 channels tested with new electronics and alive.
- Cosmic ray test this summer.
- Endcap
 - The old crystals will be refurbished with new preamplifiers and readout.
 - Bias filter is modified. Pedestal, test pulse position, cosmic peak position tested.
 - The system will be installed in 2015.
 - Upgrade planned to pure CsI to deal high background issue. Ongoing R&D.

K_L + Muon Detector

Barrel

- Belle RPC's will be reused.
- Two inner layers are replaced by scintillator strips in 2013.
- Various integration test with new FEE going on in 2014 (@KEK later).
- Endcap
 - RPC's are replaced with scintillators to fight neutron background.
 - 56 forward sectors were installed in April 2014.
 - 46 backward sectors will be installed this summer.
 - ~ 99% geometrical acceptance. Better PID efficiency. σ < 1ns.

Doris Y Kim, Soongsil University

Belle II: Offline Computing & Software

The Offline Software System

- A "framework" system with dynamic module loading, parallel processing, Python steering, and ROOT I/O. Use of GRID with Dirac.
- Full detector simulation with Geant4
- Code management systems at KEK: The Subversion software
- All common linux operating systems supported: SL, Fedora, Ubuntu, etc
- C++ 11 and gcc 4.7
- Formatting tool: astyle
- Building: scons, buildbot
- Documentation: Doxygen, Twiki
- Issue tracking: Redmine
- Ideas from ILC, LHCb, CDF, Alice

• 3rd party: ROOT, boost, CLHEP, etc. Global Developers

In Development: Tools & Event Display

- Tracking with
 - Finder: Old Belle algorithm or New including Legendre.
 - New fitting
- Alignment with Millepede II
 - The framework successfully applied to VXD testbeam data.
- Dedicated Database studies
- PID tools in testing.
- Analysis tools are being created.
- Full cycle of gen / sim / rec / analysis tested.

 Display: basf2 + ROOT with OpenGL support

MC Campaigns

- Roughly two MC campaigns per year as challenge data sets.
- Latest set: ~ 6 billion MC events generated in April and May in the DIRAC framework.

Summary

Final Remarks

- Belle II (June 30, 2014): ~ 600 scientists, 97 institutions, 23 countries
- Many projects going on actively.
- Physics run expected in 2017.
- Many thanks for the colleagues who provided valuable ideas, data and plots for this talk.

Extra Slides

Luminosity Projection

Beam Parameters: KEKB vs SuperKEKB

	KEKB Design	KEKB Achieved (Crab)	SuperKEKB Nano-Beam	
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	4.0/7.0	
β _y * (mm)	10/10	5.9/5.9	0.27/0.30	×
β _x * (mm)	330/330	1200/1300	32/25	
ε _x (nm)	18/18	18/24	3.2/4.6	
$\varepsilon_y/\varepsilon_x$ (%)	1	0.85/0.64	0.27/0.28	
σ _y (mm)	1.9	0.94	0.048/0.062	
ξy	0.052	0.129/0.090	0.088/0.081	
σ _z (mm)	4	6 ~ 7	6/5	
I _{beam} (A)	2.6/1.1	1.64/1.19	3.6/2.6	>
N _{bunches}	5000	1584	2500	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	80	

July 29, 2014 Courtesy: Ken-ichi Kanazawa @ ICHEP2014

×2

Challenges to Belle II

- Higher background (× 10~20 of KEKB).
 - Touscheck scattering
 - Radiative Bhabha
 - 2-photon
 - More radiation damage, fake hits, pile-up
- Higher event rate (×10)
 - L1 trigger rate: ~20 kHz
- Improvements planned:
 - Better hermitricity.
 - Better IP and secondary vertex resolution.
 - Better PID.

The Computing Model till 3rd Data Year

