Experimental search for $\mu^+ \rightarrow e^+ \gamma$ present and future

Dmitry Grigoriev Budker Institute of Nuclear Physics Novosibirsk State University Novosibirsk, Russia On behalf of MEG and MEG-2 collaborations

> RENCONTRES DU VIETNAM Quy Nhon, 31.07.2014

MEG HOME

Switzerland PSI, ETH-Z

Italy INFN + Univ. : Pisa, Genova, Pavia, Roma I & Lecce

MEG Collaboration

some 65 Physicists 5 Countries, 14 Institutes

USA University of California Irvine UCI

Russia BINP, Novosibirsk, JiNR, Dubna

Japan

Univ.Tokyo, KEK Waseda Univ., Kyushu Univ.

Why $\mu^+ \rightarrow e^+ \gamma$

- CLFV Forbidden in SM (background: $Br(\mu^+ \rightarrow e^+\gamma) < 10^{-45}$)
- So far, no CLFV signal has been observed.
- Many new physics beyond SM (e.g. SUSY, Extra dimensions etc.) predict observable Br (10⁻¹⁴ — 10⁻¹¹)
- Discovery will be an unambiguous evidence of new physics.

- Complementary search of new physics,
 - LHC Run 2
 - New experiments to search for other muon channels (µ→e convertion, µ→eee)

Signal and backgrounds

Signal µ+ decay at rest

52.8 MeV (half of M_{μ}) (E_{γ}, E_{e}) Back-to-back ($\theta_{e\gamma}, \phi_{e\gamma}$) Timing coincidence $(T_{e\gamma})$

Accidental background (dominant)

Michel decay e^+ + random γ

Random timing, angle, E < 52.8MeV

Radiative muon decay

$$\mu^{*} \rightarrow e^{*} v v \gamma$$

Timing coincident, not back-to back,

E <52.8MeV

Key points of the experiment

- high quality & rate stopped μ-beam ⇒ surface muon beam (10⁸/s), (E × B) Wien filter, SC-solenoid+degrador
- e⁺ magnetic spectrometer with excellent tracking & timing capabilities ⇒ COBRA magnet, DCs & TCs
- photon detector with excellent spatial, tming & energy resolutions ⇒ 900 litre LXe detector (largest in world)
- Stable and well monitored & calibrated detector ⇒ Arsenal of calibration & monitoring tools

Layout of the experiment

Beam line

- High-intensity DC surface muon beam πE5+MEG
 ⇒ capable of > 10⁸ μ⁺/s at 28 MeV/c + ~10⁹ ~beam e⁺/s
- "pure" muon beam Wien filter + Collimator system
- $\Rightarrow \mu$ -e separation at collimator >7.5 σ (12 cm)
- Small beam-spot + high transmission BTS
 ⇒ focus enhancement, beam σ~10 mm at target
 ⇒ focus at centre BTS degrader
- Thin stopping target + minimal scattering end-caps
 ⇒ 18 mg/cm² CH₂ target + He COBRA environment
 + remote Target & End-cap insertion system

Target

collimator

Layout of the detector

The important part – gradient field COBRA magnet: tracks radius is independent on incident angle at 52.8 MeV/c

Positron spectrometer

- SC COBRA Magnet
- Gradient Bfield (1.27-0.5) T <u>COnstant Bending RA</u>dius
- 0.2 X₀ fiducial thickness
 γ-transparency 95%
- NC Compensations coils reduce Bfield at Calorimeter
 5mT at PMT positions

Positron spectrometer

- Drift Chambers
- 16 radial, staggered double-layered DCs
- each 9 cells with "Vernier" cathodes
- 50:50 He/C₂H₆

• Ultra-thin $2 \cdot 10^{-3} X_0$ along e⁺ path

Momentum resolution $\langle \sigma p/p \rangle$ 6‰ Angular resolution (e⁺) $\phi \sim 7 \text{ mr}$ $\theta \sim 10 \text{ mr}$

Positron spectrometer

- Timing Counter Arrays
- 2 arrays of each 15 axial scintillator bars BC404 e⁺ impact point + timing intrinsic $\sigma_t \approx$ 70ps over 90 cm
- 256 orthogonal radial scintillating fibres BCF-20 + APDs triggering (angular matching)

Calorimeter

- Largest LXe calorimeter in the world 900 litres $\Delta\Omega/4\pi = 10\%$
- Fast response (4, 22 ns) minimize "pileup"
- Large light-yield ~80% Nal
- high density, short X₀
- Homogeneous medium uniform response,

no segmentation needed

- Sensitive to impurities at sub –ppm level (mainly H₂O, O₂, N₂)
- Scintillation light used for shower reconstruction $\lambda = 175 \text{ nm}$
- 846 PMTs wall-mounted inside LXe-volume signals digitized @ 1.6 GHz

Energy resolution $\langle \sigma E/E \rangle \langle 2\% \text{ at } 52.8 \text{ MeV} \rangle$ Timing resolution = 67 ps Position resolution (X,Y) 5 mm, (depth) 6 mm γ -efficiency 59% ($\varepsilon_{\text{Detect}} \times \varepsilon_{\text{Anal}}$)

Calibration and Monitoring

Laser

(rough) relative timing calib

- 2-3 044

EG Detec

Standar

PMT QE & At

Cold GXe LXe

the second secon

Cosm aligni + spe

Cosmic rel. alignment LXe + spectrometer

PMT: Gain, QE,

LXe: Light-yield, Attenuation-length

e.g. α s, LED, π -p \rightarrow π^0 n or γ n, "Dalitz-decay,

Calo.+TC: Relative detector timing, Alignment

RMD, protons from C-W accelerator on $Li_2B_4O_7$,

n-generator+ Ni, cosmics, Mott e⁺ beam

educe pile-ups

+p y+n (129Me)

ew days ~ 1 week

Calorimeter: Energy-scale

LXe Nal

Pion CEX on LH₂

Detector Stability

Detector Stability permanently monitored

- Light Yield stable to < 1% rms < 2‰
- Photon energy-scale cross-checked using BG-spectrum from LXe side-bands
- Timing stability checked using radiative muon decay events (RMD) taken simultaneously during run (multi-trigger) T_{eγ} stable ~ 15 ps over whole run

Energy [MeV]

Analysis Principle

Blind likelihood Analysis:

Analysis Region shown in 2D (No Selection)

III Time and E_γ sidebands Important Ingredient to Analysis also angular sidebands introduced ⇒ Since our background is dominated by "accidentals" the side bands can be used to estimate the background in the signal region, check of experimental sensitivity & measure the timing resolution using RMD in the E_γ-sideband

Results

Phy. Rev. Lett. 110, 201801 (2013)

Data taking finished at 31.08.2013 Statistics is doubled compare to published

year	Nstop μ, x10 ¹³	Sensitivity, x10 ⁻¹³	Br, Upper limit (CL 90%), x10 ⁻¹³
2009+2010	17.5	13	13
2011	18.5	11	6,7
2009+2010+2011	36.0	7.7	5.7 (20 times better
All data (expected)	~80	~5	than MEGA)

Final result of analysis is expected by the end of 2014

MEG-2

- Goal to reach sensitivity in order of magnitude better than MEG:
 - More statistics (double beam rate)
 - Improve efficiency ~2 and background rejection ~30 (upgrade of LXe calorimeter, new cylindrical Drift Chamber, new Timing counters).

Layout of MEG-2 detector

Calorimeter upgrade

Present

Improved layout of PMTs

 Replace 2" PMTs on inner face with newly developed VUV-sensitive SiPMS Upgraded

	Present	Upgraded		computer graphics
Energy resolution [%]			2 inch PMT	12×12 mm2 MPPC
	2.4 / 1.7	1.1 / 1.0	216 ch shallow / deep events	~ 4000 ch
Position resolution [mm]	5 / 5	2.6 / 2.2	(d = 2cm) ←─── horizontal / vertical	
Detection Efficiency	63%	69%	Factor 2 better energy and position resolutions 10% higher efficiency	

New drift chamber

Gas volume

- Lower Z gas mixture (85% He + 15% iso-butane)
- Unique 2m-long chamber-gas volume, improved transparency to timing-counters.
 - Double the detection efficiency
 - Improve the Time-Of-Flight error down to 10 psec

Wire configuration

- Stereo-angle configuration for longitudinal position
- Finer granularity (7 mm cell) and higher multiplicity (15 → 60 hits per track)
- Single hit spacial resolution of 120~μm

New timing counters

- Many small plastic counters.
- Six SiPMs are directly attached on both sides for high light-collection efficiency.
 - SiPMs on the same side are attached in series to read with a single channel.
- In average, ~8 counters hit by a signal positron.
 - 30 psec time resolution by averaging the hittimes

Current status

Xenon calorimeter

- Development of LXe MPPC is finished. PDE of 15% is achieved for LXE light. Production of 600 MPPCs for a prototype is done.
- Mass test of MPPCs and the performance study of the calorimeter will be done with a prototype detector.

Drift chamber

- Geometrical parameters have been fixed.
- Prototype R&D on-going (aging, resolution).
- Good (~110 µm) spacial resolution for cosmic-rays was confirmed

Timing counters

Prototype R&D on-going. 30 ps resolution is achieved at test beam.

GOAL- start physical run at 2016

Near future

Conclusion

- MEG experiment successfully finished data taking 31.08.2013.
- The statistics is double compare to published result. The data analysis will be finished at 2014.
- Expected improvement of sensitivity from 7.7x10⁻¹³ to ~5x10⁻¹³.
- Preparation of MEG-2 is in good shape.
- Expected MEG-2 sensitivity after data taking in 2016-2018 is ~5x10⁻¹⁴.

Thanks for your attention!

Backup

Confidence Interval

 Confidence interval calculated with Feldman-Cousins method + profile likelihood ratio ordering

Consistent with null-signal hypotesis