

Charged Lepton Flavour Violation BSModels

Frank Deppisch f.deppisch@ucl.ac.uk

University College London

Flavour Physics Conference | Quy Nhon | 27/01-02/08/2014

Lepton Flavour versus Lepton Number Violation

Neutrinoless double beta decay

 $\mu^- \rightarrow e^- \gamma$

 $\mu^+ \rightarrow e^-$ conversion in nuclei

 $\Delta L_e = 2, \Delta L_{\mu} = 0, \Delta L = 2$ Lepton Number Violation

 $\Delta L_e = 1, \Delta L_\mu = 1, \Delta L = 2$ Lepton Flavour Violation + Lepton Number Violation

Frank Deppisch | Charged LFV BSModels | 31/07/2014

Charged Lepton Flavour Violation

- Charged Lepton Flavour (practically) conserved in the SM (+ light v)
 - LFV is clear sign for BSM physics

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{m_W^2} \right|^2 \approx 10^{-56}$$

- Flavour violation in the quark and neutrino sector
 - Strong case to look for CLFV
- Generic BSModels at TeV scale with couplings to leptons lead to large CLFV
- CLFV can shed light on
 - Grand Unification models
 - Flavour symmetries
 - Origin of flavour

(Charged) LFV Models

Models of Neutrino Mass Generation around the TeV scale

- Seesaw Models
 - I, II, III, Inverse etc.
- Radiative Mass Models
 - Zee, Babu-Zee, etc.
- Supersymmetry
 - R-Parity Conserving
 - Arbitrary slepton masses or in combination with high-scale Seesaw
 - R-Parity Violating
 - L-violating couplings, Neutrino mass generation
- Extended Higgs/Gauge Sectors
 - Left-Right Symmetry, Little Higgs, Additional Doublets, etc.
 - Extra Dimensions
 - ... etc.

Effective Operators

Models excite different (combinations of) operators

BSM Flavour Problem

Stringent limits on NP operators, e.g.

$$Br(l_i \to l_j \gamma) \approx \frac{24\sqrt{2}\pi^3 \alpha}{G_F^3 m_{l_i}^2 M_{NP}^4} \left| C_{ij} \right|^2$$

$$\begin{array}{ll} \circ & Br(\mu \to e\gamma) < 5.7 \times 10^{-13} & \Rightarrow & \left| C_{\mu e} \right| < 5 \times 10^{-9} \left(\frac{M_{NP}}{\text{TeV}} \right)^2 \\ \circ & Br(\tau \to l\gamma) < 4.0 \times 10^{-8} & \Rightarrow & \left| C_{\tau l} \right| < 6 \times 10^{-7} \left(\frac{M_{NP}}{\text{TeV}} \right)^2, \ l = e, \mu \end{array}$$

- > LFV couplings must be suppressed and/or New Physics scale is larger $\approx 10^3$ TeV
- Solutions
 - No New Physics at the TeV scale
 - Specific flavour structure of New Physics
 - Degeneracy
 - Symmetry (e.g. Minimal Flavour Violation)

- Effective operator for Majorana neutrino mass
 - Only dimension-5 operator beyond SM

$$\mathcal{L} \supset \frac{1}{2} \frac{h_{ij}}{\Lambda_{LNV}} (\overline{L}_i^c \cdot H) (H^T \cdot L_j) \xrightarrow[\langle H \rangle]{} \frac{1}{2} (m_v)_{ij} \overline{\nu}_i^c \nu_j$$

Seesaw Mechanism

• Add right-handed neutrinos N_i to SM

$$\mathcal{L} \supset Y_{ij}^{\nu} \overline{N}_i L_j \cdot H - \frac{1}{2} M_{ij} \overline{N}_i N_j^c \xrightarrow{\mu \ll M_N} \frac{1}{2} (Y_{ki}^{\nu} M_{kl}^{-1} Y_{lj}^{\nu}) (\overline{L}_i^c \cdot H) (H^T \cdot L_j)$$

Light neutrino mass

$$m_{\nu} \approx 0.1 \text{ eV} \left(\frac{Y_{\nu} \langle H \rangle}{100 \text{ GeV}}\right)^2 \left(\frac{10^{14} \text{ GeV}}{M}\right)$$

CLFV in the Seesaw Mechanism

- Light neutrino exchange
 - Negligible due to small neutrino masses and ≈unitarity of PMNS mixing matrix

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{m_W^2} \right|^2 \approx 10^{-56}$$

$$\frac{l_{K}}{U_{Ki}} = \frac{V_{Li}}{V_{Ki}} = \frac{l_{K}}{V_{Ki}}$$

- Heavy neutrino exchange
 - Sizable for TeV scale heavy neutrinos and large LR mixing $V^{LR} \approx 10^{-2}$

$$\begin{split} Br(\mu \to e\gamma) &\approx 4 \times 10^{-3} \left| \sum_i V_{\mu i}^{LR*} V_{ei}^{LR} G\left(\frac{m_{N_i}^2}{m_W^2}\right) \right|^2 \\ &\approx 10^{-11} \left(\frac{V^{LR}}{10^{-2}}\right)^4 \end{split}$$

$$\mathcal{U}^{\nu} = \begin{pmatrix} U & V^{LR} \\ (V^{LR})^{\mathsf{T}} & U^{R} \end{pmatrix}$$

Correct light neutrino masses for TeV scale heavy neutrinos

- Seesaw Mechanism with TeV scale heavy neutrinos
 - Standard Seesaw with small Yukawa couplings V^{L}

$$R \approx Y_{\nu} \approx 10^{-6} \sqrt{M_N/\text{TeV}}$$

- CLFV remains small
- "Bent" Seesaw mechanisms

- Effective operator for Majorana neutrino mass
 - Only dimension-5 operator beyond SM

$$\mathcal{L} \supset \frac{1}{2} \frac{h_{ij}}{\Lambda_{LNV}} (\bar{L}_i^c \cdot H) (H^T \cdot L_j) \xrightarrow[\langle H \rangle]{} \frac{1}{2} (m_v)_{ij} \bar{\nu}_i^c \nu_j$$

Seesaw Mechanism

 $\langle H \rangle$

10 / 14

Seesaw I

Singlet

 $\langle H \rangle$

- Effective operator for Majorana neutrino mass
 - Only dimension-5 operator beyond SM

$$\mathcal{L} \supset \frac{1}{2} \frac{h_{ij}}{\Lambda_{LNV}} (\overline{L}_i^c \cdot H) (H^T \cdot L_j) \xrightarrow{\langle H \rangle} \frac{1}{2} (m_v)_{ij} \overline{\nu}_i^c \nu_j$$

• Alternative to Seesaw, e.g. Babu-Zee model (Zee '85, Babu '88)

SUSY Seesaw

- Neutrino flavour mixing radiatively induces slepton flavour mixing (Borzumati, Masiero '86)
- Correlation between slepton and neutrino flavour mixing (Type I)

$$\left(\delta m_{\tilde{L}}^{2}\right) = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{12}^{*} & \delta_{22} & \delta_{23} \\ \delta_{13}^{*} & \delta_{23}^{*} & \delta_{33} \end{pmatrix} \propto \left(Y^{\nu \dagger} \cdot Y^{\nu}\right) \log(M_{X}/M_{\nu_{R}})$$

Induces observable charged LFV rates despite high scale Seesaw $M_{\nu_R} \approx 10^{14} {\rm GeV}$

Esteves et al. '11

Observable High Energy CLFV at LHC?

- $\tau\mu/\tau e$ flavour transitions less constrained ($h \rightarrow \mu\tau$ observed?)
- Small CLFV messenger mass splitting

Off-shell **GIM** mechanism

$$Br(\mu \to e\gamma) \propto \Delta M_N^2/M_{W_R}^2$$

CLFV through heavy portal (FFD, Desai, Valle, Phys. Rev. D89 051302) 10^{-2} N can only decay through heavy-light suppressed coupling $\theta = Y_{\nu} \langle H \rangle / m_N$ 10^{-1} 10^{-6}

Frank Deppisch | Charged LFV BSModels | 31/07/2014

μ

Conclusion

LFV is crucial probe for BSM physics

- Smoking gun for BSM physics
- Strong experimental sensitivity $\Lambda \approx 10^{3-4} \text{ TeV}$

Connection to neutrino physics

- But possibly indirect (LNV vs LFV)
- Models of neutrino mass predict wildly different CLFV rates
- CLFV as discriminator
 - $\tau \rightarrow l\gamma \text{ vs } \mu \rightarrow e\gamma \text{ vs } \mu e \text{ conversion vs } \mu \rightarrow eee$
 - μe conversion in different nuclei

Flavour Symmetries and Structures

- Discrete, Continuous, Textures, Minimal Flavour Violation
- CLFV critical to solve flavour puzzle

Synergy with LHC searches

- Potential to observe CLFV (Already seen in $h \rightarrow \mu \tau$?)
- Complementarity of Observables