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Introduction
The baryon asymmetry of the universe (BAU)

                                             

must be explained by some dynamical mechanism ⇒ baryogenesis

Sakharov’s conditions:

(1) and (2) are present in the SM

(1) B+L anomaly ⇒ transitions between vacua with different (B+L) possible
at T≳Mweak, where nonperturbative (B+L)-violating processes (electroweak 
sphalerons) are in equilibrium

Electroweak baryogenesis fails in the SM because (3) is not satisfied [also 
CP violation is too weak] ⇒ need either new physics at Mweak to modify 
the dynamics of the EWPT, or generate a (B-L) asymmetry at T > TEW

(1) B violation
(2) C and CP violation
(3) departure from thermal equilibrium

nB � nB̄

n�
' nB

n�
= (6.04± 0.08)⇥ 10�10 (Planck)



Leptogenesis (generation of a B-L asymmetry above TEW, which is then 
converted into a B asymmetry by EW sphalerons) belongs to the second class

Attractive mechanism since connects neutrino masses to the BAU:

the B-L asymmetry is generated in out-of-equilibrium decays of heavy states 
involved in neutrino mass generation, such as the heavy Majorana neutrinos
of the (type I) seesaw mechanism

                                                  ⇒

This mechanism contains all ingredients for baryogenesis (L violation due to 
heavy Majorana mass, CP violation due to complex heavy neutrino couplings)

Other realizations are possible, e.g. with an EW scalar triplet (type II seesaw)

This talk: status of standard leptogenesis (with heavy Majorana neutrinos)
+ recent developments in scalar triplet leptogenesis

m� � y2v2

MR

Minkowski ’77 - Gell-Mann, Ramond, Slansky ’79
Yanagida ’79 - Glashow ’79 - Mohapatra, Senjanovic ’80

[Fukugita, Yanagida ‘86]



Review of standard leptogenesis

Generate a B-L asymmetry through the out-of-equilibrium decays of the 
heavy Majorana neutrinos responsible for neutrino mass

Seesaw mechanism:

                                     ⇒

                           (Majorana) ⇒ decays both into l⁺ and l⁻

(Mν)αβ = −
∑

i

YiαYiβ

Mi
v
2 (v = 〈H〉)

Lseesaw = −
1

2
MiN̄iNi −

(

N̄iYiαLαH + h.c.
)

Γtree(Ni → LH) = Γtree(Ni → L̄H
!) =

Mi

16π
(Y Y

†)ii

N
c

i ≡ CN̄
T

i = Ni

[Fukugita, Yanagida ‘86]



CP asymmetry due to interference between tree and 1-loop diagrams:

                        ⇒

CP asymmetry in N1 decays (hierarchical case                       ):

The generated asymmetry is partly washed out by L-violating processes:

Γ(Ni → LH) "= Γ(Ni → L̄H
!)

�N1 ⇥
�(N1 ⇤ LH)� �(N1 ⇤ L̄H�)
�(N1 ⇤ LH) + �(N1 ⇤ L̄H�)

⌅ 3
16⇥

�

k

Im[(Y Y †)2k1]
(Y Y †)11

Mk

M1

Covi, Roulet, Vissani ’96
Buchmüller, Plümacher

• inverse decays
• ΔL=2 N-mediated scatterings

• ΔL=1 scatterings involving the top or gauge bosons

LH ! N1

LH ! L̄H̄ , LL ! H̄H̄
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Figure 6.1: Diagrams for various 2 ↔ 2 scattering processes: (a) scatterings with the top-quarks, (b), (c)
scatterings with the gauge bosons (A = B, Wi with i = 1, 2, 3), (d) ∆L = 2 scatterings mediated by N1.

6.3 The O(h2
tλ

2) and O(h2
t λ

4) terms

In this section, we include processes involving the top Yukawa coupling ht. Processes involving gauge
bosons can be included in a similar way and we add them in our final expressions.

We denote the left-handed third-generation quark doublet by q3, and the SU(2)-singlet top by t. The
inclusion of 1 ↔ 3 decays and inverse decays such as N1 ↔ !αq̄3t, and of N1!α ↔ q3t̄ scatterings mediated
by Higgs exchange, follows lines analogous to those presented in the previous section. For the O(h2

tλ
2)

contributions to the evolution of the N1 density, we obtain:
(
ẎN1

)

II
= −(yN1 − 1)

[
γN→3 + γ2↔2

top

]
. (6.32)

Here,

γN→3 ≡
∑

β

(γN1

#β q̄3t + γN1

#̄βq3t̄
), (6.33)
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The evolution of the lepton asymmetry is described by the Boltzmann eq.

Typical evolution:

Final baryon asymmetry:

   C  = 28/79   conversion factor by sphalerons

   η  = efficiency factor

Maximal Temperature of the Early Universe 17
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Fig. 10. Evolution of heavy neutrino abundance NN1 and lepton asymmetry NB�L

for typical leptogenesis parameters: M1 = 1010 GeV, em1 = 8⇡�1(vEW)/M1)2 eV,
✏1 = 10�6; the inverse temperature z = M1/T is the time variable. The dashed
(full) lines correspond to thermal (vacuum) initial conditions for the heavy neutrino
abundance; the dotted line represents the equilibrium abundance. From Ref. [47].

Here the dilution factor d ⇠ 0.01 accounts for the increase of the photon
number density between leptogenesis and today, and the e�ciency factor
f ⇠ 10�2 is a consequence of washout e↵ects due to lepton number chang-
ing scatterings in the plasma.

It turns out that for the relevant range of neutrino masses, the final
baryon asymmetry is determined by decays and inverse decays of the heavy
neutrinos [46]. In the “one-flavour” approximation, where one sums over
lepton flavours in the final state, the Boltzmann equations take the simple
form

dnN

dt
+ 3HnN = � �

nN � neq
N

�
�N , (5.8)

dnL

dt
+ 3HnL = �✏1

�
nN � neq

N

�
�N . (5.9)

Here nN (neq
N ) and nL (neq

L ) are the (equilibrium) number densities2 of heavy
neutrinos and leptons, respectively. Note that the CP asymmetry ✏1 results
from a quantum interference. On the contrary, washout terms, which are
neglected in Eqs. (5.8) and (5.9), are tree level proesses.

2
Note that in Fig. 10 number densities NN1 and NB�L are plotted for a portion of

comoving volume that contains one photon.

[Buchmüller, Di Bari, Plümacher]

sHz
dYL

dz
=

✓
YN1

Y eq
N1

� 1

◆
�D ✏N1 �

YL

Y eq
L

(�D + ��L=1 + ��L=2)

YB ⌘ nB � nB̄

s
= �3.9⇥ 10�3 C ⌘ ✏N1

YL ⌘ (nL � nL)/s YN1 ⌘ nN1/s z ⌘ M1/T



Can leptogenesis explain the observed baryon asymmetry?

           Case

  region of successful leptogenesis
  in the                plane

                            controls washout

                      

⇒                                              depending on the initial conditions

Case                : if                        , the self-energy part of εN1 has a resonant 
behaviour, and                        is compatible with successful leptogenesis 
(“resonant leptogenesis”)
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Figure 9: Allowed range of m̃1 and mN1
for leptogenesis in the SM and MSSM assuming

m3 = max(m̃1, matm) and ξ = m3/m̃1. Successful leptogenesis is possible in the area inside
the curves (more likely around the border).

In fact, even if N1 initially has a thermal abundancy ρN1
/ρR ∼ gN1

/g∗ " 1, its contribution
to the total density of the universe becomes no longer negligible, ρN1

/ρR ∼ (gN1
mN1

)/(g!T ),
if it decays strongly out of equilibrium at T " mN1

. For the reasons explained above, this
effect gives a suppression of η (rather than an enhancement), and for very small m̃1 the
case (1) and (∞) give the same result.

The lower panel of fig. 8 contains our result for the efficiency |η| of thermal leptogenesis
computed in cases (0), (1) and (∞) as function of both m̃1 and mN1

. At mN1
>∼ 1014 GeV

non-resonant ∆L = 2 scatterings enter in thermal equilibrium strongly suppressing η.
Details depend on unknown flavour factors.

Our results in fig. 8 can be summarized with simple analytical fits

1

η
≈

3.3 × 10−3 eV

m̃1

+

(

m̃1

0.55 × 10−3 eV

)1.16

in case (0) (40)

valid for mN1
" 1014 GeV. This enables the reader to study leptogenesis in neutrino mass

models without setting up and solving the complicated Boltzmann equations.

Implications

Experiments have not yet determined the mass m3 of the heaviest mainly left-handed
neutrino. We assume m3 = max(m̃1, matm). Slightly different plausible assumptions are
possible when m̃1 ≈ matm, and very different fine-tuned assumptions are always possible.

20

M1 ≥ (0.5 − 2.5) × 109 GeV

|M1 − M2| ∼ Γ2

M1 ! 10
9
GeV

M1 �M2

Covi, Roulet, Vissani ’96
Pilaftsis ’97

[Giudice, Notari, Raidal, Riotto, Strumia ’03]

m̃1 ⌘ (Y Y †)11v2

M1

(m̃1,M1)

M1 ⌧ M2,M3

[Davidson, Ibarra ’02]



Flavour effects in leptogenesis

“One-flavour approximation” (1FA): leptogenesis described in terms of a single 
direction in flavour space, the lepton       to which N1 couples

This is valid as long as the charged lepton Yukawas λα are out of equilibrium

At                      ,  λτ is in equilibrium and destroys the coherence of            
⇒ 2 relevant flavours:      and a combination     of     and 

At                    , λτ and λµ are in equilibrium ⇒ must distinguish     ,      and

➞ depending on the T regime, BE’s for 1, 2 or 3 lepton flavours

Flavour-dependent CP asymmetries and washout rates:

➞ flavour-dependent Boltzmann equations

Barbieri, Creminelli, Strumia, Tetradis ’99
Endoh et al. ’03 - Nardi et al. ’06 - Abada et al. ’06
Blanchet, Di Bari, Raffelt ’06 - Pascoli, Petcov, Riotto ’06

T � 1012 GeV

T � 109 GeV

X

↵

�1↵ N̄1`↵H ⌘ �N1N̄1`N1H `N1 ⌘
X

↵

�1↵ `↵/�N1

`N1

`N1

`⌧ `a `e `µ

`e `µ `⌧

✏↵N1
=

�(N1 ! `↵H)� �(N1 ! ¯̀
↵H̄)

�(N1 ! `↵H) + �(N1 ! ¯̀
↵H̄)

X

↵

✏↵N1
= ✏N1



Proper description of flavour effects: density matrix

explicitly flavour-covariant formalism: Boltzmann equations covariant 
under flavour rotations

However, only really needed at the transition between 2 different flavour 
regimes; otherwise there is always a natural basis choice in which the BE’s 
for the density matrix reduce to a set of BE’s for flavour asymmetries

E.g. at                      in the basis                      , the diagonal entry 
corresponding to       is the only nonzero entry of   

At                                     , fast λτ - induced interactions such as
destroy the quantum coherence between     and the other lepton flavours

diagonal entries = flavour asymmetries 

off-diagonal entries = quantum correlations between flavours
(�`)↵�

�`↵ ⌘ Y`↵ � Y¯̀
↵

` ! U` �` ! U⇤�l U
T

T > 1012 GeV (`N1 , `?1, `?2)

`N1
�`

109 GeV < T < 1012 GeV q3 `⌧ ! tR ⌧R
`⌧



Flavour effects lead to quantitatively different results from the 1FA

Spectacular enhancement of the final asymmetry in some cases, such as 
N2 leptogenesis (N2 generate an asymmetry in a flavour that is only mildly 
washed out by N1)  [Vives ’05 - Abada, Hosteins, Josse-Michaux, SL ’08]

if the total wash-out is strong, we can still have flavours that are weakly washed-out, hence dominating the
baryon asymmetry and allowing a successfull leptogenesis. Thus, by the inclusion of flavour in leptogenesis
no upper-bound on m̃ can be derived.
Notice that for m̃(m1) ! atm in figure 8(9), the points drop below the upper-bound MN1

! 5× 1011 GeV.
Indeed, as m1 ! atm , mmax ! m1 ! m2 ! m3, and the upper-bound on MN1

scales as 1/m1, c.f eq. (32).
In the one flavour approximation, a bound on the light neutrino mass was derived in [7], and this no
longer holds when flavours are accounted for [10]. However, in [13] a bound on the neutrino mass scale of
about 2 eV is derived in the flavoured leptogenesis context in the strong wash-out regime and hierarchical
wash-out factors 1 # κα # κβ and equal CP-asymmetries. In this work, we impose mν to be lighter than
the cosmological bound

∑

mν " 1 eV and we do not explore configurations leading to higher mν . This can
be seen in figure 9, which represents the allowed parameter space (MN1

-m1 ) in different cases. The black
points are the result when flavours are included, whereas red ones represent the one-flavour approximation.
We clearly see that the cosmological bound is saturated when flavours are considered, and this does not
occur in the one-flavour approximation. In figure 9, for m1 above matm , the solutions have in general a
specific flavour alignement: the flavoured CP-asymmetries are almost equal εe+µ ∼ ετ and the individual
wash-out factors are hierarchical 1 # κα

<∼ 10κβ and the total wash-out is strong. It is well known that
such configurations of wash-out parameters achieve sucessfull leptogenesis in the flavoured case whereas
the unflavoured one fails. For such specific configurations, effect of the off-diagonal terms of the A-matrix
on YB is maximisal (c.f fig 7) but nevertheless is only a correction without important impact.
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Figure 9:
Successfull leptogenesis: M1-m1 space, in the dynamical case (left panel) and in the thermal case (right panel).
The vertical lines represent

p

∆m2
atm (in blue) and

p

∆m2
sol (in green).

5 Conclusion

The behaviour of individual lepton asymmetries in the case of vanishing initial N1 abundance has been
analysed in [11]. In this study we give semi-analytical results including fine-tuning corrections that depend
on flavour alignment. We extend the study to the case of N1 initially in thermal equilibrium, and confirm
that in this case, when off-diagonal entries of the conversion B/3 − Lα ↔ L are neglected, the efficiency
factor for a given flavour is independent of the wash-out of other flavours.
Independently of the thermal history of the decaying right-handed neutrino, we observed that misalignment
of flavours can greatly enhance the baryon asymmetry, when compared to the one-flavour approximation,
for an identical wash-out strenght.We also include off-diagonal entries of the B/3 − Lα ↔ L conversion
that couple flavours among themselves. Even if this inclusion only modifies the baryon asymmetry by a
few percent, thus allowing to safely disregard these terms for YB computation, we nevertheless stressed
that the individual lepton asymmetries are very sensitive to such interdependencies. Finally, we studied
the lower bound on the N1 mass and the leptogenesis allowed parameter space. We confirm the lower
bound to be ∼ 4 × 108(9) GeV for a thermal (vanishing) initial N1 abundance. We have also shown that
the parameter space is enlarged, as the flavour (mis)alignment allows for higher values of the wash-out (or
equivalently of m̃).
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Figure 4: Evolution of the asymmetries as a function of z = M1/T in the (+, +,−) solution, with the off-diagonal
entries of the A matrix included (left panel) and omitted (right panel). The thin lines represent the three lepton
flavour asymmetries: Y∆e in blue (medium grey), Y∆µ in green (light grey), Y∆τ in purple (dark grey), while the
thick red (medium grey) and black lines stand for YB and Y 1F A

B−L
, respectively. The input parameters are chosen

as in Fig. 2, and the B − L breaking scale is vR = 1014 GeV.

matrix. Neglecting the off-diagonal entries of the A matrix for the moment, and omitting for simplicity
the scattering terms in W1(z), one obtains:

Y d
∆α

" e
3π
4 Aαακ1α (Y∆α)

N2
, (59)

where we have used
∫∞
0 dz z3K1(z) = 3π/2. Since κ1e # 1 # κ1µ(τ), the asymmetry in the electron

flavour is almost unaffected by N1-induced washout, while (Y∆µ)
N2

and (Y∆τ )
N2

are exponentially

diluted, namely by a factor of order 10−11. The final baryon asymmetry is14:

YB "
10

31
Y d

∆e
"

10

31
0.92 (Y∆e)N2

" −1.2 × 10−10 , (60)

in good agreement with the numerical result. In the one-flavour approximation instead, the B − L
asymmetry generated in N2 decays is completely washed out by N1-related processes:

Y 1F A
B−L " e−

3π
4 κ1 (Y 1F A

B−L)
N2

" 6 × 10−35 (Y 1F A
B−L)

N2
, (61)

so that the dominant contribution to Y 1F A
B−L actually comes from N1 decays, in spite of the smallness of

ε1 (an analogous statement can be made about Y∆µ and Y∆τ in the flavour-dependent treatment). All
these results are illustrated in the right panel of Fig. 4.

Let us now add the effect of the off-diagonal entries in the A matrix. The contribution to Y∆α of the
second term in the right-hand side of Eq. (57) has been evaluated in Ref. [51], in the non-supersymmetric
case:

Y od
∆α

"
1.3κ1α

1 + 0.8(−Aαακ1α)1.17

∑

β #=α

AαβY d
∆β

. (62)

This flavour mixing does not affect Y∆e , but prevents the complete depletion of Y∆µ and Y∆τ :

Y od
∆µ(τ)

" 0.12Y d
∆e

" −4.4 × 10−11 . (63)

The final baryon asymmetry is only marginally affected, reaching YB " −1.5 × 10−10. These analytic
estimates are confirmed by the numerical results shown in the left panel of Fig. 4.

14As explained earlier in this section, the sign of YB is not relevant since it can be reverted by changing the sign of Φu
2

(if one neglects the small contribution of δCKM to YB).
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Type II seesaw mechanism:

                                             electroweak triplet

generates a neutrino mass matrix

Also leads to leptogenesis provided another heavy state couples to lepton 
doublets ⇒ generation of a CP asymmetry in triplet decays possible

Scalar triplet leptogenesis
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◆Type I+II seesaw mechanism:

Right-handed neutrino mass matrix: 

     vR ≡〈ΔR〉 scale of B-L breaking

    ΔR = SU(2)R triplet with couplings fRij to right-handed neutrinos

vL is small since it is an induced vev: 

In a broad class of theories with underlying left-right symmetry (such as    
SO(10) with a        ), one has             and             

������������ left-right symmetric seesaw mechanism

ΔL = SU(2)L triplet with
couplings fLij to lepton doublets

vL ≡ 〈∆L〉 ∼ v2vR/M2
∆L

MR = fRvR

Mν = fLvL −
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Figure 1: Tree-level and one-loop Feynman diagrams responsible for the flavored CP asym-
metry ✏`i

�↵
in the pure type-II seesaw scenario.

the interference between the tree-level and wave-function corrections shown in Fig. 1, it
therefore consists of two pieces: a lepton number and flavor violating one (scalar loops)
and a purely flavor violating part (lepton loops). The total flavored CP asymmetry in �

↵

decays can then be written as

✏`i
�↵

= ✏
`i( 6L, 6F )

�↵
+ ✏

`i( 6F )

�↵
, (13)

where the two pieces read

✏
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i
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Y †
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] + |µ
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) , (15)

with

g(x) =
x(1� x)

(1� x)2 + xy
(16)

and y = (�Tot

��
/m

��
)2. Note that the CP asymmetry in Eq. (14) is in-line with what

has been found in [19]. This piece, which we refer to as purely flavored CP violating
asymmetry, satisfies the total lepton number conservation constraint

X

i

✏
`i( 6F )

�↵
= 0 , (17)

and so the total CP asymmetry can consequently be written as

✏
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X
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X
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. (18)

In terms of triplet decay observables the total flavored asymmetries can be recasted ac-
cording to
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Figure 2: Tree-level and one-loop Feynman diagrams accounting for the flavored CP asym-
metry ✏`i

�↵
in scenarios featuring type-I and type-II interplay.

⇥ g(m2

�↵
/m2

��
) . (19)

If flavor e↵ects are operative, that is to say if leptogenesis takes place below 1013 GeV,
the purely flavored CP asymmetry in (15) will play a role in the generation of the B � L
asymmetry. These asymmetries, conserving total lepton number, involve only the Y

↵

Yukawa couplings and not the lepton number violating parameter µ
�↵ . Hence, as also

noted in Ref. [19], they are not necessarily suppressed by the smallness of the neutrino
masses. As can be seen by comparing (14) and (15), when the condition

µ⇤
�↵

µ
��

⌧ m2

�↵
Tr[Y

↵

Y †
�

] (20)

is satisfied, the purely flavored CP asymmetry overshadows the lepton number violating
piece, therefore leading to a regime where leptogenesis is entirely driven by flavor dy-
namics. In terms of scalar triplet interactions, this means that a purely flavored scalar
triplet leptogenesis scenario naturally emerges whenever the triplets couple substantially
less to SM scalars than to leptons, B↵

`

� B↵

�

for at least one value of ↵. Note that
although PFL scenarios in type-I seesaw can be defined as well, they di↵er significantly
from the purely flavored scalar triplet leptogenesis scenario in that the latter just require
suppressed lepton number violation in a single triplet generation i.e. suppression of lepton
number breaking interactions in the full Lagrangian is not mandatory, as can be seen by
noting that condition (20) can be satisfied even if µ

�↵/m�↵ ⌧ Y
↵

for a single value of ↵.

We now turn to the case where the new states beyond the scalar triplet are RH
neutrinos. In these scenarios the tree-level triplet decay involves only a vertex one-loop
correction as shown in Fig. 2. The interference between the tree and one-loop level
diagrams leads to the following CP asymmetry [14, 15]:
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�

|2 ln
✓
1 +

m2

�

M2
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◆
. (21)

Here the triplet generation index, being superfluous, has been dropped. In contrast to
what has been found in the previous case, the resulting flavored CP asymmetry violates
lepton flavor as well as lepton number. So, unless a specific (and somehow arbitrary)
flavor alignment is assumed, so that

P
i

✏`i
�

= 0, in these “hybrid” schemes PFL scenarios
are not definable.

6

RH neutrinos

additional triplets



Can parametrize the effect of the heavier state(s) in a model-independent 
way by its (their) contribution(s) to neutrino masses:

                                                        ⇒

The flavoured CP asymmetries are given by:

LH = �1

4
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Figure 1:

where we included a factor 2 in the definition of εH and in εαα for later convenience.
The flavour-dependent CP asymmetries εαβ come from the interference between the 2
diagrams of Fig. 1. With the definition (12), they can be expressed in terms of m∆

and mH as:

εαβ =
1

4π

M∆

v2
√

B#BH

Im
[

(m†
∆)αβ(mH)αβ

]

m̄∆
, (13)

where m̄∆ =
√

tr(m∆m
†
∆). The total CP asymmetry is given by: [

ε∆ = 2
∑

α≤β

Γ(∆† → "α"β) − Γ(∆ → "cα"cβ)

Γ∆ + Γ
∆†

= 2
Γ(∆ → HH) − Γ(∆† → H†H†)

Γ∆ + Γ
∆†

. (14)

]

ε∆ ≡
∑

α,β

εαβ = εH . (15)

where the second equality follows from CPT invariance. (SL: Benôıt, peux-tu vérifier si
tu es d’accord avec l’équation ci-dessus? Je ne me rappelle plus si tu as ajouté un facteur
2 dans ε∆ pour tenir compte du fait que ces désintégrations sont ∆L = 2)

1.3 Washout

The washout of the asymmetry occurs through the inverse decays of the triplet and
the ∆L = 2, 2–2 scatterings ## ↔ H†H† and #H ↔ #cH†, mediated by the triplet in
the s- and t-channel, respectively, as well as by the higher order operator responsible
for mH.

When including flavour in the computation, one should also add 2–2 scatterings
which do not modify the total lepton number but violate lepton flavour, namely #α#β ↔
#γ#δ, #α#cγ ↔ #cβ#δ, #α∆↔ #β∆, #α∆† ↔ #β∆† and #α#cβ ↔ ∆∆†.
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Boltzmann equations (neglecting the off-shell scatterings                                
                               and spectator processes such as top Yukawa interactions)

The observed BAU can be reproduced for                            (precise 
value depends on the size of the triplet contribution to neutrino masses)

First studies of lepton flavour effects by González-Felipe, Joaquim, Serôdio ’13 
and Aristizabal Sierra, Dehn Hambye ’14, but flavour non-covariant formalism

1-flavour case [Hambye, Raidal, Strumia ’05]
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Contrarily to the type I seesaw case, in scalar triplet leptogenesis there is no 
preferred basis in which the BE’s for the density matrix           reduce to BE’s 
for flavour-diagonal asymmetries (except at                    , where all quantum 
correlations between lepton flavours are destroyed by Yukawa couplings)

In particular, no well-defined one-flavour approximation at 
[basic reason: no basis in which the triplet couples to a single lepton flavour]

If write BE’s for the individual flavour asymmetries in two different bases, will 
find a different result for the final baryon asymmetry

Flavour-covariant Boltzmann equations
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10 -1 1 10 10 2

10 -12

10 -11

10 -10

10 - 9

MD ê T

as
ym

m
et
ry

DB - L

DB - L
1

DB - L
2density matrix

neutrino mass eigenstate basis

charged lepton eigenstate basis

(M� = 5⇥ 1012 GeV) [SL, B. Schmauch]

T > 1012 GeV



Boltzmann equations for the density matrix [SL, B. Schmauch, to appear]

At  

                                                                                  inverse decays

T > 1012 GeVtures higher than 1012 GeV, the system of Boltzmann equations is:
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After replacing (∆#)αβ and ∆H with g#αβ(∆ρσ,∆∆) and gH(∆ρσ,∆∆) in the right-hand
side of the equations, this system has a closed form and can be solved numerically.

When the temperature drops below 1012 GeV, the system becomes
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In what follows we will compare the results obtained with these Boltzmann equations
to those obtained after making some approximations.

Single flavour approximation, no spectator process. First we neglect all
SM Yukawa interactions as well as the QCD and electroweak sphalerons, so that

∆# = −∆, ∆H = −∆− 2∆∆, (110)
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In what follows we will compare the results obtained with these Boltzmann equations
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Single flavour approximation, no spectator process. First we neglect all
SM Yukawa interactions as well as the QCD and electroweak sphalerons, so that
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which can safely be neglected. By doing so, we keep only the terms which are kine-
matically allowed for on-shell particles:

−
∫
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. (51)

Then, dropping Bose enhancement and Fermi blocking factors we obtain:
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. (52)

The computation of the other terms of the right-hand side give similar results, and in
the end, remembering that

γD =

∫

d3p

(2π)32ω$p

∫
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we get for the washout term related to decays and inverse decays WD
αβ

WD
αβ =

2B%

λ2%

[

(ff †)αβ
∆∆

Σeq
∆

+
1

4Y eq2
%

(
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We can linearize this, using again the fact that flavour-blind gauge interactions keep
the lepton densities close to their equilibrium values:

Yαβ − Ȳαβ =(∆%)αβ ,

Yαβ + Ȳαβ =2Y eq
%

(

δαβ +O(ε2)
)

, (55)

which gives:
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]

γD. (56)

From there we can easily deduce how to express this term for temperatures smaller
than 1012 GeV, by imposing the conditions (∆%)eτ = (∆%)µτ = (∆%)τe = (∆%)τµ = 0.
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Figure 3: 2-loop contributions to the lepton doublet self-energy Σβα, giving rise to the CP
asymmetry

The flavour structure of the other processes can be read on higher-order loop contri-
butions to the 1PI self-energy of the lepton doublets. The washout terms due to the
scatterings involving two leptons and two Higgs look like
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where γ∆%H , γH%H and γI%H are respectively the contribution due to the triplet exchange,
the contribution of the 5d operator responsible for mH and the interference term be-
tween the two, so that γ%H = γ∆%H + 2γI%H + γH%H .

The washout term due to the 4-fermion scatterings is
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whereas the washout term due to lepton-triplet scatterings is
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tr(ff †ff †)
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1
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ff †ff †∆% − 2ff †∆%ff
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γ%∆. (66)

As expected, these last two terms vanish if one goes to the single flavour approximation
α = β = 1.

2.2 Chemical equilibrium

Various SM reactions that contribute indirectly to the washout of the asymmetry have
to be included in the computation. For simplicity we assume that these SM processes
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(scatterings involving leptons and Higgs bosons)

f ∗
βσ καρ κ∗

βσ fαρ

µ µ∗

Figure 3: 2-loop contributions to the lepton doublet self-energy Σβα, giving rise to the CP
asymmetry

The flavour structure of the other processes can be read on higher-order loop contri-
butions to the 1PI self-energy of the lepton doublets. The washout terms due to the
scatterings involving two leptons and two Higgs look like

W%H
αβ = 2

{

1

tr(ff †)

[(

2f∆T
% f

† + ff †∆% +∆%ff †
)

αβ

4Y eq
%

+
∆H

Y eq
H

(ff †)αβ

]

γ∆%H

+
1

! [tr(fκ†)]

[(

2f∆T
% κ

† + fκ†∆% +∆%fκ†
)

αβ

4Y eq
%

+
∆H

Y eq
H

(fκ†)αβ

]

γI%H

+
1

! [tr(fκ†)]

[(

2κ∆T
% f

† + κf †∆% +∆%κf †
)

αβ

4Y eq
%

+
∆H

Y eq
H

(κf †)αβ

]

γI%H

+
1

tr(κκ†)

[(

2κ∆T
% κ

† + κκ†∆% +∆%κκ†
)

αβ

4Y eq
%

+
∆H

Y eq
H

(κκ†)αβ

]

γH%H

}

, (64)

where γ∆%H , γH%H and γI%H are respectively the contribution due to the triplet exchange,
the contribution of the 5d operator responsible for mH and the interference term be-
tween the two, so that γ%H = γ∆%H + 2γI%H + γH%H .

The washout term due to the 4-fermion scatterings is

W4%
αβ =

2

[tr(ff †)]2

[

tr(ff †)

(

2f∆T
% f

† + ff †∆% +∆%ff †
)

αβ

4Y eq
%

−
Tr(∆%ff †)

Y eq
%

(ff †)αβ

]

γ4%, (65)

whereas the washout term due to lepton-triplet scatterings is

W%∆
αβ =

1

tr(ff †ff †)

[

1

2Y eq
%

(

ff †ff †∆% − 2ff †∆%ff
† +∆%ff

†ff †
)

αβ

]

γ%∆. (66)

As expected, these last two terms vanish if one goes to the single flavour approximation
α = β = 1.

2.2 Chemical equilibrium

Various SM reactions that contribute indirectly to the washout of the asymmetry have
to be included in the computation. For simplicity we assume that these SM processes
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For the 2×2 matrix ∆0
! describing the asymmetry stored in the e−µ space, the washout

term due to decays and inverse decays is

W̃D
αβ =

2B!

λ2!

[

(ff †)αβ
∆∆

Σeq
∆

+
1

4Y eq
!

(

2fατf
∗
βτ∆!τ + fατ (f

†∆0
!)τβ + (∆0

!f)ατf
∗
βτ

)

+
1

4Y eq
!

(2f̃ (∆0
!)

T f̃ † + f̃ f̃ †∆0
! +∆0

! f̃ f̃
†)αβ

]

γD, (57)

where we defined

f̃ =

(

fee feµ
fµe fµµ

)

. (58)

For the asymmetry stored in the τ doublet, the washout term is [

ŴD
τ =

2B"

λ2
"



(ff†)ττ
∆∆

Σeq

∆

+
1

2Y eq

"





∑

α,β

fταf
∗
τβ

(

(∆0

" )βα + ∆"τ

)

+ 2|fττ |2∆"τ







 γD . (59)

]

ŴD
τ =

2B!

λ2!



(ff †)ττ
∆∆

Σeq
∆

+
1

2Y eq
!





∑

α,β

fταf
∗
τβ

(

(∆0
! )βα +∆!τ δαβ

)

+ |fττ |2∆!τ







 γD.

(60)

(SL: il manquait un δαβ et, sauf erreur de ma part, un facteur 2 était de trop) The same
procedure can be applied to the other terms to derive their form for 109 < T < 1012

GeV.
We also need the covariant expression of the CP asymmetry. We note E∆ the matrix

of CP asymmetries in ∆ decay. From the computation of section 1.2 we can guess that
its diagonal elements will be given by

Eαα =
∑

γ

εαγ

=
1

4π

M∆

v2
√

B!BH

∑

γ

Im
[

(m†
∆)αγ(mH)αγ

]

m̄∆
(61)

In the CTP formalism, the CP violation arises from 2-loop contributions to the self-
energy, shown in Fig. 3. Without going through the whole computation again (we
just want to know the dependence of the asymmetry matrix in the couplings), we
can see from the diagram that the generalization of this can be obtained by replacing
∑

γ Im[µf∗
αγκαγ ] with

∑

γ [µf
∗
αγκβγ − µ∗fβγκ∗αγ ]/(2i), so that:

Eαβ =
1

8πi

M∆

v2
√

B!BH
(m†

∆mH −m†
Hm∆)αβ

m̄∆
(62)

The total asymmetry ε∆ is just the trace of this matrix. Now we can define the
covariant source term

Sαβ = Eαβ
(

Σ∆

Σeq
∆

− 1

)

γD (63)
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Figure 7: Baryon Asymmetry of the Universe as a function of λ! for M∆ = 5 × 1012 GeV,
for m∆ = imν (left) and m∆ = iU∗ diag (

√

1− x2
η yη m̄ν , xηyη m̄ν ,

√

1− y2η m̄ν)U † (right).
The continuous lines indicate the result of the computation involving a 3×3 density matrix,
whereas the dotted lines indicate the result of the single flavour approximation, taking the
spectator processes into account (red) or not (blue).

spectator processes and including flavour gives a much more accurate result than doing
the opposite. Fig. 8 shows that when the tau Yukawa is in equilibrium (T < 1012 GeV)
the 2-flavour computation gives the more accurate result for m∆ = imν , whereas for
the other ansatz we can see that both the 3-flavour computation neglecting spectator
processes and the 2-flavour computation including them give a final baryon asymmetry
which is up to 50% below the result obtained performing the full computation.

Finally, we look for a lower bound on the triplet mass, considering here the two

cases m∆ = imν and m∆ = iU∗ diag
(√

1− x2η yη m̄ν , xηyη m̄ν ,
√

1− y2ηm̄ν

)

U †. Fig.

9 shows the results. We performed the computation assuming that the 3rd generation
and charm Yukawa are in equilibrium, which is true in most of the sector that we
considered. We see that the inclusion of flavour effects and spectator processes does
not spectacularly modify the result obtained in the single flavour approximation: from
1.2×1011 GeV, the lower bound on the triplet mass goes down to 4.4×1010 GeV when
all relevant effects are included in the computation.

4 Conclusions

Acknowledgments We thank XXXX for useful comments. This work has been
supported in part by the Agence Nationale de la Recherche under contract ANR 2010
BLANC 0413 01.
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Figure 9: Isocurves of the final baryon asymmetry nB/nγ obtained performing the full com-
putation, for m∆ = imν (left) and m∆ = iU∗diag(

√

1− x2
η y m̄ν , xηyη m̄ν ,

√

1− y2ηm̄ν)U †

(right). The colored regions indicate where a large enough baryon asymmetry is created, for
the full computation (red) or in the minimal single flavour approximation (blue).
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Some non-standard SO(10) models lead to pure type II
seesaw mechanism ⇒ neutrinos masses proportional to
triplet couplings to leptons:

These models also contain heavy (non-standard) leptons that induce a CP 
asymmetry in the heavy triplet decays

The SM and heavy lepton couplings are related by the SO(10) gauge 
symmetry, implying that the CP asymmetry in triplet decays can be expressed 
in terms of (measurable) neutrino parameters

    ➞ important difference with other triplet leptogenesis scenarios

A predictive scheme for scalar triplet leptogenesis

Type I+II seesaw mechanism:

Right-handed neutrino mass matrix: 

     vR ≡〈ΔR〉 scale of B-L breaking

    ΔR = SU(2)R triplet with couplings fRij to right-handed neutrinos

vL is small since it is an induced vev: 

In a broad class of theories with underlying left-right symmetry (such as    
SO(10) with a        ), one has             and             

������������ left-right symmetric seesaw mechanism

ΔL = SU(2)L triplet with
couplings fLij to lepton doublets

vL ≡ 〈∆L〉 ∼ v2vR/M2
∆L

MR = fRvR

Mν = fLvL −

v2

vR

Y T f−1

R
Y ≡ M II

ν + M I
ν

SO(10) models with a left-right symmetric seesaw

Y = Y
T

126H fL = fR � f

(M⌫)↵� =
�Hf↵�
2M�

v2

∆

Lβ

Lα

+
∆

L

L

S, T

Lα

Lβ

Figure 2: Feynman diagrams responsible (together with the CP-conjugated diagrams) for
the CP asymmetry in the decays of the scalar triplet into standard model lepton doublets.

Γ(∆s → LL)+Γ(∆s → L̃cL̃c), i.e. the CP asymmetries in ∆s decays into light leptons
and into heavy sleptons are exactly opposite. This allows one to define

ε∆s ≡ 2 ε∆s→L̃cL̃c = −2 ε∆s→LL , (14)

where the factor of 2 accounts for the fact that two antileptons are produced in each
∆s decay. Furthermore, supersymmetry ensures that the CP asymmetries of all com-
ponents of the ∆, ∆ supermultiplets are the same:

ε∆s = ε∆s
= εΨ∆

≡ ε∆ . (15)

The Feynman diagrams relevant to the computation of ε∆ are shown in Fig. 2. For
arbitrary masses M∆, MS , MT and Mi (i = 1, 2, 3), one obtains:

ε∆ =
1

16π

∑

R=S,T

cR

3
∑

k,l=1

F

(

M2
R

M2
∆

,
M2

k

M2
∆

,
M2

l

M2
∆

)

Im[fkl(f∗ff∗)kl]

32πΓ∆s/M∆
, (16)

where cS = 3/5 and cT = 1 are SU(5) Clebsch-Gordan coefficients, and the loop
function F reads:

F (x, xk, xl) = θ(1−
√
xk −

√
xl)

√
x ln

[

1 + 2x− xk − xl +
√

λ(1, xk, xl)

1 + 2x− xk − xl −
√

λ(1, xk, xl)

]

. (17)

It is instructive to consider some particular cases. In the case 2M3 < M∆, all terms
in the sum over k, l in Eq. (16) contribute to the asymmetry, and they add up to
zero in the limit of massless L̃c

i ’s (Mi/M∆ → 0). This is simply due to the fact that
ε∆ ∝ Im [Tr(ff∗ff∗)] in this limit, as discussed previously. In the case 2M1 < M∆ <
M1 +M2, only the term k = l = 1 contributes and F is maximal for M1 = 0, while it
is reduced by about a factor of 2 (4) for 2M1/M∆ = 0.87 (0.97) and MS,T /M∆ ! 3. If
in addition MS = MT ≡ M24, Eq. (16) simplifies to, for M1 & M∆:

ε∆ '
1

10π

M24

M∆
ln

(

1 +
M2

∆

M2
24

)

Im[f11(f∗ff∗)11]

λ2
L + λ2

Lc
1

+ λ2
Hu

+ λ2
Hd

, (18)

where λLc
1
≡ |f11|.
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➞      depends on measurable neutrino parameters

➞ the CP violation needed for leptogenesis is provided by the CP-violating 
phases of the lepton mixing matrix (the Majorana phases to which neutrinoless 
double beta decay is sensitive)

An approximate solution of the Boltzmann equations suggested that successful 
leptogenesis is possible if the ‟reactor” mixing angle      is large enough (prior 
to its measurement by the Daya Bay experiment)

➞ confirmed by the numerical resolution of the flavour-covariant Boltzmann 
equations  [SL, B. Schmauch, to appear]

Dependence on the light neutrino parameters

Uei = (c13c12e
i�, c13s12, s13e

i⇥)

��

✏� / 1

(
P

i m
2
i )

2

⇢
c413c

2
12s

2
12 sin(2⇢)m1m2�m2

21

+c213s
2
13c

2
12 sin 2(⇢� �)m1m3�m2

31 � c213s
2
13s

2
12 sin(2�)m2m3�m2

32

�

✓13
[Frigerio, Hosteins, SL, Romanino ’08]



Parameter space allowed by successful leptogenesis

10 - 4 10 - 3 10 - 2
1012

1013

1014

m 1 in eV

M
D
in
G
eV

B aryon asymmetry
n B

n g

10 -10

10 - 9

10 - 8

l L > 1

M� (GeV)

m1 (eV)

isocontours of η

[SL, B. Schmauch]



10 - 4 10 - 3 10 - 2 10 -1

10 - 5

10 - 4

10 - 3

10 - 2

m 1

si
n
2
q 1

3

baryon asymmetry
n B

n g

m1 (eV)

sin2 ✓13

[SL, B. Schmauch]

0.0156  sin2 ✓13  0.0299

(3σ range)

[arXiv:1209.3023]

isocontours of η



M� (GeV)

[SL, B. Schmauch]

m3 (eV)

 ➞ inverted hierarchy disfavoured



Conclusions

Leptogenesis is an attractive mechanism for generating the baryon 
asymmetry of the Universe

In its minimal version with heavy Majorana neutrinos, the only required 
ingredients are the ones needed to generate small neutrino masses via
the seesaw mechanism

Lepton flavour dynamics can significantly affect the baryon asymmetry 
generated by leptogenesis

Recent progress in scalar triplet leptogenesis: inclusion of flavour effects, 
flavour-covariant Boltzmann equations (density matrix formalism), 
application to a predictive model providing a link between leptogenesis
and low-energy parameters
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leptogenesis:                                                 depends on the phases of 

low-energy CP violation:  phases of UPMNS

➞ are they related?

➞ leptogenesis only depends on the phases of R = high-energy phases

⇒ unrelated to CP violation at low-energy, except in specific scenarios

Is leptogenesis related to low-energy (= PMNS) CP violation?

✏N1 /
P

k Im [(Y Y †)k1]2 M1/Mk

⇢
�

�2,�3

➞ oscillations
➞ neutrinoless double beta

Y Y †

Y =

0

@

p
M1 0 0
0

p
M2 0

0 0
p
M3

1

A R

0

@
p
m1 0 0
0

p
m2 0

0 0
p
m3

1

A U †

3 heavy Majorana masses Mi 9 low-energy parameters

complex 3x3 matrix satisfying                  ⇒  3 complex parameters      

(mi, ✓ij , �,�i)

RRT = 1

[Casa, Ibarra]

Y Y † =

0

@

p
M1 0 0
0

p
M2 0

0 0
p
M3

1

A

0

@

p
M1 0 0
0

p
M2 0

0 0
p
M3

1

A

0

@
m1 0 0
0 m2 0
0 0 m3

1

A R†R



However, if lepton flavour effects play an important role, the high-energy and 
low-energy phases both contribute to the CP asymmetry and cannot be 
disentangled. Leptogenesis possible even if all high-energy phases (R) vanish

Asymmetry in the flavour lα:

�� = � 3M1

16⇥v2

Im
�⇤

⇥⇤ m1/2
⇥ m3/2

⇤ U�
�⇥U�⇤R1⇥R1⇤

⇥

⇤
⇥ m⇥ |R1⇥ |2

!11.5 !11 !10.5 !10 !9.5 !9
Log

10
YB

!0.04

!0.02

0

0.02

0.04

J
C
P

FIG. 1. The invariant JCP versus the baryon asymmetry
varying (in blue) δ = [0, 2π] in the case of hierarchical RH
neutrinos and NH light neutrino mass spectrum for s13 = 0.2,
α32 = 0, R12 = 0.86, R13 = 0.5 and M1 = 5×1011 GeV . The
red region denotes the 2σ range for the baryon asymmetry.
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Although difficult to test, leptogenesis would gain support from:

- observation of neutrinoless double beta decay: (A,Z) → (A,Z+2) e⁻ e⁻ 
[proof of the Majorana nature of neutrinos - necessary condition]

- observation of CP violation in the lepton sector, e.g. in neutrino 
oscillations [neither sufficient nor necessary condition (*)]

- experimental exclusion of non-standard electroweak baryogenesis 
scenarios [e.g. MSSM with a light stop, NMSSM, 2HDM, SM + Higgs 
singlet...]

(*) in general, leptogenesis depends both on high-energy and low-energy (i.e. PMNS) phases


