Experimental Summary
-or rather personal chatting-

Xth Rencontres du Vietnam
Flavour Physics Conference

Quy Nhon, Vietnam, July 27 - August 2, 2014

Tatsuya Nakada
LPHE
EPFL
Lausanne, Switzerland
It was said in this conference

- CP violation was discovered 50 years ago! (Aushev, Ceccucci)

It was said in this conference

- CP violation was discovered 50 years ago! (Aushev, Ceccucci)

But also

50 years ago quark was proposed by

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN
California Institute of Technology, Pasadena, California

Received 4 January 1964

A formal mathematical model based on field
theory can be built up for the quarks exactly as for
p, n, Λ in the old Sakata model, for example 3)

(instead of purely mathematical entities as they
would be in the limit of infinite mass). Since charge
and baryon number are exactly conserved, one of
the quarks (presumably u²/3 or d²/3) would be abso-
lutely stable *, while the other member of the dou-
blet would go into the first member very slowly by
β-decay or K-capture. The isotopic singlet quark
would presumably decay into the doublet by weak
interactions, much as Λ goes into N. Ordinary
and

AN SU\(_3\) MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

G. Zweig *)

CERN - Geneva

ABSTRACT

Both mesons and baryons are constructed from a set of three fundamental particles called aces. The aces break up into an isospin doublet and singlet. Each ace carries baryon number \(\frac{1}{3}\) and is consequently fractionally charged. SU\(_3\) (but not the Eightfold Way) is adopted as

REFERENCES

4) Dr. Gell-Mann in a recent preprint, Physics Letters, to be published, has independently speculated about the possible existence of these particles. His primary motivation for introducing them differs from ours in many respects.
This provoked me a question

- Is flavour a quantum number related to internal symmetry?
- Are “charges” (electric, strong and weak) flavour?
- Are isospins flavour?
- etc. etc.
This provoked me a question

• Is flavour a quantum number related to internal symmetry?
• Are “charges” (electric, strong and weak) flavour?
• Are isospins flavour?
• etc. etc.
• Let me define like this:
 “Flavour physics is measuring properties of the processes with changing flavours, literally or virtually, with precision.” (“virtually”, since I have EDM or $\mu(g-2)$ in my mind)
Exp. presented in this conference

<table>
<thead>
<tr>
<th>Quarks</th>
<th>Charged leptons</th>
<th>Neutrinos</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABAR</td>
<td>BABAR</td>
<td>T2K</td>
<td>SHIP</td>
</tr>
<tr>
<td>BELLE</td>
<td>BELLE</td>
<td>NOvA</td>
<td></td>
</tr>
<tr>
<td>BES III</td>
<td>BES III</td>
<td>MicroBooNE</td>
<td>EDM</td>
</tr>
<tr>
<td>ATLAS</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDF</td>
<td>?</td>
<td>Daya Bay</td>
<td></td>
</tr>
<tr>
<td>CMS</td>
<td>?</td>
<td>Various very short baseline experiments</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>?</td>
<td>ICECUBE</td>
<td></td>
</tr>
<tr>
<td>LHCb</td>
<td>LHCb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NA62</td>
<td>MEG</td>
<td>GERDA</td>
<td></td>
</tr>
<tr>
<td>KOTO</td>
<td>Mu2E</td>
<td>completed, active, in preparation</td>
<td></td>
</tr>
<tr>
<td>KLOE</td>
<td>COMET</td>
<td>being considered</td>
<td></td>
</tr>
<tr>
<td>(ORKA)</td>
<td></td>
<td></td>
<td>and not all the experiments are covered</td>
</tr>
</tbody>
</table>

Quy Nhon, Vietnam, 27.7-2.8 2014

Flavour Physics Conference

T. NAKADA 8/52
Quark sector

- It has been impressive (for me) to see that B physics at LHC, i.e. hadron machine (Rademacker, Schiller, Walder, Nguyen, MTresch, FTresch, FSimonetto, Egorychev, Canale, Shaheen), became truly complimentary and competitive to the e^+e^- machines (Staric, Rotondo, Beleno, Neri, Cai)
Quark sector

• It has been impressive (for me) to see that B physics at LHC, i.e. hadron machine (Rademacker, Schiller, Walder, Nguyen, MTresch, FTresch, FSimonetto, Egorychev, Canale, Shaheen), became truly complimentary and competitive to the e+e− machines (Staric, Rotondo, Beleno, Neri, Cai)

• In 2nd Rencontres du Vietnam on 21st to 28th Oct 1995 in Ho Chi Minh City, I had a pleasure to
Quark sector

• It has been impressive (for me) to see that B physics at LHC, i.e. hadron machine (Rademacker, Schiller, Walder, Nguyen, MTresch, FTresch, Egorychev, Canale, Shaheen), became truly competitive to the \(e^+ e^- \) machines (Staric, Rotondo, Belendo).

• In 2nd Rencontres du Vietnam on 21st to 28th Oct 1995 in Ho Chi Minh City, I had a pleasure to see a total eclipse.
Quark sector

• It has been impressive (for me) to see that B physics at LHC, i.e. hadron machine (Rademacker, Schiller, Walder, Nguyen, MTresch, FTresch, FSimonetto, Egorychev, Canale, Shaheen), became truly complimentary and competitive to the e^+e^- machines (Staric, Rotondo, Beleno, Neri, Cai)

• In 2nd Rencontres du Vietnam on 21st to 28th Oct 1995 in Ho Chi Minh City, I had a pleasure to
 – see a total eclipse
 – to present the LHC potential for B physics
Table 2 summarises the performance of the LHC experiments for measuring CP violation parameters in one year of data taking.

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHC-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity [cm(^{-2}) s(^{-1})]</td>
<td>(10^{33})</td>
<td>(10^{33})</td>
<td>(1.5 \times 10^{32})</td>
</tr>
<tr>
<td>(\sin 2\alpha) with (B_d \to \pi^+\pi^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td>50</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>(\sigma(\sin 2\alpha)_{\text{stat.}})</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>background/signal</td>
<td>(\sim 1)</td>
<td>(\sim 1)</td>
<td>can be made to (\sim 0)</td>
</tr>
<tr>
<td>(\sin 2\beta) with (B_d \to J/\psi K_s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td>16</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>(\sigma(\sin 2\beta)_{\text{stat.}})</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>(\gamma) with (B_d \to D K^*) and (B_s \to D_s K)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(\gamma)_{\text{stat.}})</td>
<td>-</td>
<td>-</td>
<td>6(^\circ) to 12(^\circ)</td>
</tr>
<tr>
<td>(\delta\gamma \equiv \gamma - \gamma') with (B_s \to J/\psi \phi)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td>16</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>(\sigma(\sin 2\beta)_{\text{stat.}})</td>
<td>0.06</td>
<td>-</td>
<td>0.02</td>
</tr>
</tbody>
</table>
equivalent luminosity with Run 1 condition would be 20 fb\(^{-1}\) for ATLAS and CMS, 3 fb\(^{-1}\) for LHCb

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHC-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity [cm(^{-2}) s(^{-1})]</td>
<td>(10^{33})</td>
<td>(10^{33})</td>
<td>(1.5 \times 10^{32})</td>
</tr>
<tr>
<td>(\sin 2\alpha) with (B_d \rightarrow \pi^+\pi^-)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td>50</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>(\sigma(\sin 2\alpha)_{\text{stat.}})</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>background/signal</td>
<td>(~1)</td>
<td>(~1)</td>
<td>can be made to (~0)</td>
</tr>
<tr>
<td>(\sin 2\beta) with (B_d \rightarrow J/\psi K_S)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td>16</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>(\sigma(\sin 2\beta)_{\text{stat.}})</td>
<td>0.02</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>(\gamma) with (B_d \rightarrow DK^*) and (B_s \rightarrow D_s K)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sigma(\gamma)_{\text{stat.}})</td>
<td>-</td>
<td>-</td>
<td>(6^\circ) to (12^\circ)</td>
</tr>
<tr>
<td>(\delta\gamma \equiv \gamma - \gamma') with (B_s \rightarrow J/\psi \phi)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td>16</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>(\sigma(\sin 2\beta)_{\text{stat.}})</td>
<td>0.06</td>
<td>-</td>
<td>0.02</td>
</tr>
</tbody>
</table>
in the proceedings...

equivalent luminosity with Run 1 condition would be 20 fb\(^{-1}\) for ATLAS and CMS, 3 fb\(^{-1}\) for LHCb

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHC-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity [cm(^{-2}) s(^{-1})]</td>
<td>10(^{33})</td>
<td>10(^{33})</td>
<td>1.5\times10(^{32})</td>
</tr>
<tr>
<td>(\sin 2\alpha) with (B_d\rightarrow\pi^+\pi^-)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td>50</td>
<td>27</td>
<td>14</td>
</tr>
<tr>
<td>(\sigma(\sin 2\alpha)_{\text{stat.}})</td>
<td>0.04</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>background/signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(m_B)) [MeV/c(^2)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sigma(\sin 2\beta)_{\text{stat.}})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\gamma = (115^{+28}_{-43})^\circ \text{ from } B_s^0 \rightarrow D_s K
\]

LHCb by Schiller 1 fb\(^{-1}\)

\[
\gamma = (67.2 \pm 12)^\circ \text{ from } B_u \rightarrow D K
\]

LHCb by Rademacker 3 fb\(^{-1}\)

6° to 12°
in the proceedings...

equivalent luminosity with Run 1 condition would be
20 fb$^{-1}$ for ATLAS and CMS, 3 fb$^{-1}$ for LHCb

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHC-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity [cm$^{-2}$ s$^{-1}$]</td>
<td>1033</td>
<td>1033</td>
<td>1.5×1032</td>
</tr>
</tbody>
</table>

$\sin 2\alpha$ with $B_d \rightarrow \pi^+\pi^-$

| $\sigma(m_B)$ [MeV/c2] | 50 | 27 | 14 |
| (sin 2α) | 0.04 | 0.06 | 0.04 |

$\phi_s \approx -0.03 \pm 0.11$ (stat.) ± 0.03 (syst.) rad

| ϕ_s = 0.12 ± 0.25 (stat.) ± 0.05 (syst.) rad |
| 6° to 12° |

| $\delta \gamma \equiv \gamma-\gamma'$ with $B_s \rightarrow J/\psi \phi$ |
| $\sigma(m_B)$ [MeV/c2] | 16 | - | 6 |
| $\sigma(\sin 2\beta)$,stat. | 0.06 | - | 0.02 |

CMS by Simonetto

20 fb$^{-1}$

ATLAS by Walder

4.9 fb$^{-1}$
in the proceedings...

equivalent luminosity with Run 1 condition would be 20 fb\(^{-1}\) for ATLAS and CMS, 3 fb\(^{-1}\) for LHCb

<table>
<thead>
<tr>
<th></th>
<th>ATLAS</th>
<th>CMS</th>
<th>LHCb-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luminosity [cm(^{-2}) s(^{-1})]</td>
<td>10(^{33})</td>
<td>10(^{33})</td>
<td>1.5×10(^{32})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LHCb Phys. Rev. D 87, 112010 (2013) 1 fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_s)</td>
<td>(0.07 \pm 0.09 \pm 0.01) (J/(\psi\phi))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LHCb by Schiller 3 fb(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_s)</td>
<td>(0.070 \pm 0.068 \pm 0.008) (J/(\psi\pi\pi))</td>
</tr>
</tbody>
</table>

\[\sin 2\alpha \text{ with } B_d \rightarrow \pi^+\pi^-\]

\[\sin 2\beta \text{ with } B_d \rightarrow J/\psi K_S\]
Quark sector

• It has been impressive (for me) to see that B physics at LHC, i.e. hadron machine (Rademacker, Schiller, Walder, Nguyen, MTresch, FTresch, FSimonetto, Egorychev, Canale, Shaheen), became truly complimentary and competitive to the e^+e^- machines (Staric, Rotondo, Beleno, Neri, Cai)

• In 2nd Rencontres du Vietnam on 21st to 28th Oct 1995 in Ho Chi Minh City, I had a pleasure to
 – see a total eclipse
 – to present the LHC potential for B physics

• Experiments are doing well
Quark sector

- Both hadron machines and e^+e^- machines are now contributing to all B, D, K flavour physics in a really competitive and complementary way:
 - Progress in the detector technology has been crucial to realise this progress for the hadron experiments to profit high production cross section and high beam flux.
Quark sector

• Both hadron machines and e^+e^- machines are now contributing to all B, D, K flavour physics in a really competitive and complementary way:
 → Progress in the detector technology has been crucial to realise this progress for the hadron experiments to profit high production cross section and high beam flux.
 → For charm, fixed target experiments were already competitive with Si micro-strip detector and basically triggerless data taking + simultaneous offline reconstruction, while B had to wait for colliders due to the cross section.
Quark sector

• Both hadron machines and e⁺e⁻ machines are now contribution to all B, D, K flavour physics in really competitive and complementary way:

• LHC (and Tevatron) high p_T experiments plays a unique role in top flavour physics
 – e.g. $|V_{td}|, |V_{tb}|, |V_{ts}|, |V_{td}|, |V_{ts}|$: B and K loop and Δm’s vs $|V_{tb}|$ from the tree level
Direct $|V_{tb}|$ measurement

- Basic assumption: single top production at Tevatron and LHC is proportional to $|V_{tb}|^2$
- Top reconstruction is usually done with lepton + jet + b-tagging + missing energy i.e. another $|V_{tb}|^2$ (Shaw)
Direct $|V_{tb}|$ measurement

- Basic assumption: single top production at Tevatron and LHC is proportional to $|V_{tb}|^2$
- Top reconstruction is usually done with lepton + jet + b-tagging + missing energy
 i.e. another $|V_{tb}|^2$ Interesting prospect!

| ch. | $< |V_{tb}|$ | $|Vtb|$ measured value |
|--------|-------------|-------------------------------------|
| CDF (1.96 TeV) | s+t | 0.84 | |
Quark sector

• Both hadron machines and e^+e^- machines are now contribution to all B, D, K flavour physics in really competitive and complementary way:

• LHC (and Tevatron) high p_T experiments plays a unique role in top flavour physics
 – e.g. $|V_{td}||V_{tb}|$, $|V_{ts}||V_{tb}|$, $|V_{td}||V_{ts}|$: B and K loop and Δm’s vs $|V_{tb}|$ from the tree level

• Many progress in CP violation and rare decays in K (Goudzovski, Nanjo, Moskal, Wang), D (Staric, Rademacker) and B (Rademacker, MTresch, FTresch, MRotondo, FSimonetto) and in spectroscopy (Egorychev, Canale, Shaheen, Neri, Cai) and production. Sorry for not spending time for these!
Lepton Sector

• When I arrived at SIN (present PSI) in 1984, there was an experiment called SINDRUM, looking for $\mu \rightarrow 3e$ and obtained $< 1.0 \times 10^{-12}$, then later modified the detector to measure $\mu \rightarrow e$ conversion ($\mu \rightarrow e\gamma$ at Los Alamos). Neutrino oscillations boosted the interest on charged lepton flavour violation experiments and benefiting progress in technology.
Lepton Sector

• When I arrived at SIN (present PSI) in 1984, there was an experiment called SINDRUM, looking for $\mu \rightarrow 3e$ and obtained $< 1.0 \times 10^{-12}$, then later modified the detector to measure $\mu \rightarrow e$ conversion ($\mu \rightarrow e\gamma$ at Los Alamos). Neutrino oscillations boosted the interest on charged lepton flavour violation experiments and benefiting progress in technology.

• Now MEG is taking data $\mu \rightarrow e\gamma$ (Grigoriev)
• $<5.7\times10^{-13}$ (90%CL)
• twice more data in hand but start to see background → upgrade: sensitivity goal 5×10^{-14}
Lepton Sector

• When I arrived at SIN (present PSI) in 1984, there was an experiment called SINDRUM, looking for $\mu \rightarrow 3e$ and obtained $< 1.0 \times 10^{-12}$, then later modified the detector to measure $\mu \rightarrow e$ conversion ($\mu \rightarrow e\gamma$ at Los Alamos). Neutrino oscillations boosted the interest on charged lepton flavour violation experiments and benefiting progress in technology.

• Now MEG is taking data $\mu \rightarrow e\gamma$ (Grigoriev)

• And several are lining-up: $\mu \rightarrow e$ Mu2E and COMET (Tassielli, Nam), and some others, e.g. mu3e, and activities in τ decays
Lepton Sector

• If we do not see anything, how far should we push down the sensitivity? What are the benchmark models?
Lepton Sector

• If we do not see anything, how far should we push down the sensitivity? What are the benchmark models?

• If we see something, a signal of $\mu \rightarrow e\gamma$ for example, what kind of measurements are then needed?
 – How to probe the Lorentz structure of new physics current?
 – What would be the impact for quark and neutrino sectors?
Neutrinos

• Impressive to see how quickly Daya Bay experiment (Wang) can collect data: powerful nuclear reactors! (also RENO in this context). With more data, analysis is getting more and more detailed.
Beautiful result from Daya Bay

- The far-site expected spectra are predicted

\[
\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}
\]

\[
|\Delta m^2_{ee}| = 2.44^{+0.10}_{-0.11} \times 10^{-3} \text{eV}^2
\]

\[
\chi^2/NDF = 134.7/146
\]

Quy Nhon, Vietnam, 27.7-2.8 2014

Flavour Physics Conference

T. NAKADA 32/52
Neutrinos

• Impressive to see how quickly Daya Bay experiment (Wang) can collect data: powerful nuclear reactors! (also RENO in this context). With more data, analysis is getting more and more detailed.

• T2K came back after the earthquake. Hopefully, they will have long stable running to see the progress in $\delta-\theta_{13}$ plot. (Paolone)
Intriguing T2K result

- Significant dependence on value of θ_{23}
- Need to increase the value of θ_{23} to account for T2K’s observed number of events

(NOTE: These are 1D contours for values of δ_C, not 2D contours in $\delta_C-\theta_{13}$ space)

Pink band represents PDG2012 reactor average value of $\sin^2 2\theta_{13} = (0.098 \pm 0.013)$

Best overlap with reactor results is normal hierarchy And $\delta_{CP} = -\pi/2$

Improved measurements of θ_{23} are important!
Neutrinos

• Impressive to see how quickly Daya Bay experiment (Wang) can collect data: powerful nuclear reactors! (also RENO in this context). With more data, analysis is getting more and more detailed.

• T2K came back after the earthquake. Hopefully, they will have long stable running to see the progress in $\delta-\theta_{13}$ plot. (Paolone)

• Double Chooz and NOvA (Paley) are now coming up. Some effort will be needed to catch up.
Neutrinos

• Impressive to see how quickly Daya Bay experiment (Wang) can collect data: powerful nuclear reactors! (also RENO in this context). With more data, analysis is getting more and more detailed.

• T2K came back after the earthquake. Hopefully, they will have long stable running to see the progress in $\delta-\theta_{13}$ plot. (Paolone)

• Double Chooz and NOvA (Paley) are now coming up. Some effort will be needed to catch up.

• Neutrino anomalies must be sorted out (Soderberg, Vacheret): LNSD/MiniBooNE, Ga source, Reactor (Daya Bay, D-Cooz, RENO): sterile neutrino or not?
Neutrinos

• Glad to see that GERDA (Kirsch) achieved a similar sensitivity to that of the previous experiment which claimed discovery. Looking forward to see the future progress.
Neutrinos

- Glad to see that GERDA achieved a similar sensitivity to that of the previous experiment which claimed discovery. Looking forward to see the future progress.

- Since the value of θ_{13} became known, plan for the long baseline experiments is evolving, and timescale for MICE (Uchida) may need some rethinking. The idea of nuSTORM is intriguing, although not really needed for solving the sterile neutrino problem, I think. It should not become a “perpetual” R&D.
This is what you missed
Neutrinos

- Neutrino physics can establish a rather robust research plan rather independent of what happens elsewhere.

At the same time, it seems (to me) that not much thoughts were made on how a great discovery in neutrino physics (Majorana neutrino, non 0 value of δ, ...) would change the facility plan of the other sectors of particle physics, or this may be just my prejudice?
Others

- Since the energy scale for new physics is becoming less certain, we should keep eye on other possibilities:
 - Production of weakly interacting and long living particles with beam dump experiments (Serra), e.g. νMSM
 - Neutron (Ban), atomic, … dipole moment (T violation)
 - $\mu(g-2)$
 - Axion
 - …
Final personal thoughts

- My really desperate questions concerning the flavour are:
 - why do we have “three” families?
 - why are the two mass matrices “as they are”?

Quy Nhon, Vietnam, 27.7-2.8 2014
Flavour Physics Conference
T. NAKADA 42/52
Final personal thoughts

• My really desperate questions concerning the flavour are:
 – why do we have “three” families?
 – why are the two mass matrices “as they are”?

• I am not sure whether I will see the solution before I die (SUSY may answer many important questions, but not those).
Final personal thoughts

• My really desperate questions concerning the flavour are:
 – why do we have “three” families?
 – why are the two mass matrices “as they are”?

• I am not sure whether I will see the solution before I die (SUSY may answer many important questions, but not those).

• However, flavour physics is no doubt a powerful tool to look for the next step beyond the Standard Model, whatever it turns out to be.
Final personal thoughts

• My really desperate questions concerning the flavour are:
 – why do we have “three” families?
 – why are the two mass matrices “as they are”?

• I am not sure whether I will see the solution before I die (SUSY may answer many important questions, but not those).

• However, flavour physics is no doubt a powerful tool to look for the next step beyond the Standard Model, whatever it turns out to be.

• We may not like the answer, but it will be still exiting.
To conclude

- I am very sorry to bother you to make a conclusion of conclusion (discussion session of the two vision talks) of conclusion (two vision talks, Bonivento, Titov) of conclusion (discussion session of each session) of conclusion (introduction talks of each sessions, Aushev, Patel, Cerri, Uwer, Ceccucci, Kuno, Kayser),
To conclude

• I am very sorry to bother you to make a conclusion of conclusion (discussion session of the two vision talks) of conclusion (two vision talks, Bonivento, Titov) of conclusion (discussion session of each session) of conclusion (introduction talks of each sessions, Aushev, Patel, Cerri, Uwer, Ceccucci, Kuno, Kayser,)

• and if I forgot names and experiments which should have mentioned, upgrade for example (Baldini, Bomben, Simonetto, Kim).
Please accept my sincere apology
And thanks to

• **Programme Committee** for the very stimulating conference
And thanks to

• Programme Committee for the very stimulating conference

• Local Organising Committee and support staff for the pleasant stay in Quy Nhon and at ICISE
And thanks to

- Programme Committee for the very stimulating conference
- Local Organising Committee and support staff for the pleasant stay in Quy Nhon and at ICISE
- Kim and Jean Tran Thanh Van, wonderful hosts, for their vision to create ICISE
and to all the participants