D^0 -mixing and CP Violation in Charm at Belle

Marko Starič

Jožef Stefan Institute, Ljubljana

Xth Rencontres du Vietnam

Quy Nhon, 27.7.-2.8., 2014

- Introduction
- Updates of D^0 -mixing with our final data set $(\sim 1 \ {\rm ab}^{-1})$
 - $D^0 \to K^+ \pi^-$
 - $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$
 - $D^0 \rightarrow K^0_s \pi^+ \pi^-$
- Time-integrated CPV searches
 - $D^0
 ightarrow \pi^0 \pi^0$ (latest one)
 - many more ...
- Conclusions

A B M A B M

- 3

$\square D^0 - \overline{D}^0$ mixing

• Mass eigenstates differ from flavor eigenstates

$$|D^0_{1,2}
angle= p|D^0
angle\pm q|\overline{D}^0
angle$$

• $D_{1,2}^0$ with masses m_1, m_2 and partial widths Γ_1, Γ_2

• Mixing parameters:

$$x = \frac{\Delta m}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$

• Time dependent decay rates of $D^0 \rightarrow f$ (since mixing is small):

$$rac{dN_{D^0
ightarrow f}}{dt} \propto e^{-\Gamma t} \left| \langle f | \mathcal{H} | D^0
angle + rac{q}{p} (rac{y+ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}^0
angle
ight|^2$$

- exponential time dependency modulated with x and y, and q/p
- modulation is final state dependent
- different final states sensitive to different combinations of x and y

M. Starič (IJS)

$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \big| \langle f | \mathcal{H} | D^0 \rangle + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}{}^0 \rangle \big|^2$$

• $q/p \neq 1 \Rightarrow$ indirect CP violation

•
$$|\mathcal{A}(D^0 \to f)|^2 \neq |\mathcal{A}(\bar{D}^0 \to \bar{f})|^2 \Rightarrow \text{direct CP violation}$$

Experimental techniques

- Time-dependent analysis:
 - difference in proper decay time distributions of $D^0 o f$ and $ar{D}^0 o ar{f}$
 - measure indirect CPV
- Time-integrated analysis:
 - difference in time-integrated decay rates of $D^0 o f$ and $ar{D}^0 o ar{f}$
 - measure direct+indirect CPV

M. Starič (IJS)

Experimental method at B-factories

- Usually using $D^{*+} \to D^0 \pi^+_{\rm slow}$
 - flavor tagging by $\pi_{\rm slow}$ charge
 - background suppression
- Observables:
 - D^0 invariant mass: $M \equiv m(K\pi)$
 - D^{*+} mass difference: $\Delta M \equiv m(K\pi\pi_{
 m slow}) m(K\pi)$ or $Q \equiv \Delta M m_{\pi}$
- Measurements performed mainly at $\Upsilon(4S)$
 - D^{*+} from *B* decays can be completely rejected with

$$p_{D^{*+}}^{CMS} > 2.5 ~GeV/c$$

• D⁰ proper decay time measurement:

$$t = rac{I_{dec}}{ceta\gamma} \;, \qquad eta\gamma = rac{p_{D^0}}{M_{D^0}}$$

M. Starič (IJS)

D⁰-mixing and CPV in Charm at Belle

$D^0 \to K^+ \pi^-$: Method

• Fit of WS to RS decay rate ratio in bins of measured proper decay time *t*

$$R(t) = rac{\int \Gamma_{
m WS}(t') \mathcal{R}(t-t') dt'}{\int \Gamma_{
m RS}(t') \mathcal{R}(t-t') dt'}$$

- WS and RS signal yields in bins of t determined from fit to ΔM distributions
- Resolution function parameterized as a sum of four Gaussians

$$\mathcal{R}(t) = \sum_{i=1}^{4} f_i G_i(t; \mu_i, \sigma_i), \quad \mu_i = \mu_1 + a\sigma_i$$

 Parameters f_i, μ₁, a, σ_i determined from fit to sideband subtracted RS time distribution

WS to RS ratio

Quy Nhon, 27.7.-2.8., 2014 7 / 22

 $\square D^0 \to K^+\pi^-$: Results

Test		Fit		Correlation	
hypothesis	Parameters	results		coefficient	
(χ^2/DOF)		(10^{-3})	R_D	y'	x'^2
Mixing	R_D	3.53 ± 0.13	1	-0.865	+0.737
(4.2/7)	y'	4.6 ± 3.4		1	-0.948
	x'^2	0.09 ± 0.22			1
No Mixing	R_D	3.864 ± 0.059			
(33.5/9)					

systematics less that 1/10 of statistical error

$\overset{{\scriptstyle }}{{\scriptstyle \frown}}$ Decays to CP states $D^0 o {\cal K}^+ {\cal K}^-, \pi^+ \pi^-$ (976 fb $^{-1}$)

- Measurement of lifetime difference between flavor specific and decays into *CP* final states
 - choice of flavor specific: kinematically similar $D^0 o K^- \pi^+$
- Timing distributions are exponential
 - mixing parameter:

$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$$

- $y_{CP} = y$, if CP conserved
- If CP violated ightarrow difference in lifetimes of $D^0/\overline{D^0}
 ightarrow K^+K^-, \pi^+\pi^-$
 - asymmetry in lifetimes:

$$A_{\Gamma} = \frac{\tau(\overline{D}{}^{0} \rightarrow K^{-}K^{+}) - \tau(D^{0} \rightarrow K^{+}K^{-})}{\tau(\overline{D}{}^{0} \rightarrow K^{-}K^{+}) + \tau(D^{0} \rightarrow K^{+}K^{-})}$$

- If direct CPV negligible:
 - $y_{CP} = y \cos \phi \frac{1}{2} A_M x \sin \phi$

•
$$A_{\Gamma} = \frac{1}{2}A_M y \cos \phi - x \sin \phi$$

$$A_M = 2(|q/p| - 1)$$

M. Starič (IJS)

D⁰-mixing and CPV in Charm at Belle

Quy Nhon, 27.7.-2.8., 2014 9 / 22

$D^0 \to K^+ K^-, \pi^+ \pi^-$: Method

- Simultaneous binned maximum likelihood fit of KK, $K\pi$ and $\pi\pi$
 - performed in bins of $cos\theta^*$, than weighted average to obtain y_{CP} , A_{Γ}
- Background estimated from sidebands in M
 - parameterized with two lifetime components (zero and non-zero au)
- Resolution function: decay mode, run period, $cos\theta^*$ dependent

 χ^2 /ndf= 792.9/684 (CL= 0.2%)

$$\overset{m{O}}{=} D^0 o {\cal K}^+ {\cal K}^-, \pi^+ \pi^-$$
: Results (preliminary)

arXiv:1212.3478 (2012)

$$y_{CP} = (+1.11 \pm 0.22 \pm 0.11)\%$$

 $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$

4.5 σ evidence consistent with zero

Self-conjugate decays: $D^0 \rightarrow K_s^0 \pi^+\pi^-$ (921 fb⁻¹)

PRD 89, 091103(R) (2014)

This three body decay proceeds via many intermediate states, like CF: $D^0 \rightarrow K^{*-}\pi^+$ DCS: $D^0 \rightarrow K^{*+}\pi^-$ CP: $D^0 \rightarrow \rho^0 K_c^0$

Matrix element is Dalitz space dependent, so also time distribution is

$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \left| \mathcal{A}(m_-^2, m_+^2) + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \overline{\mathcal{A}}(m_-^2, m_+^2) \right|^2$$

• Total amplitude \mathcal{A} parametrized as a sum of quasi two-body amplitudes of resonances \mathcal{A}_r

$$\mathcal{A}(m_{-}^2, m_{+}^2) = \sum_r a_r e^{i\phi_r} \mathcal{A}_r(m_{-}^2, m_{+}^2)$$

- Both mixing parameters, x and y as well as CPV parameters ϕ and |q/p| can be measured
- Requires 3D fit in (m_{-}^2, m_{+}^2, t) ; many free parameters

M. Starič (IJS)

D⁰-mixing and CPV in Charm at Belle Quy Nhon, 27.7.-2.8., 2014

12 / 22

$\square D^0 o K^0_s \pi^+\pi^-$: Method

- Unbinned maximum likelihood fit in 3D
- Dalitz model with 16 resonances
- Background estimated from sidebans
 - combinatorial: *M*-sideband
 - random π_{slow} : *Q*-sideband

• Resolution function: 3 Gaussians

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.590 ± 0.003	131.8 ± 0.2	0.6045
$K_0^*(1430)^-$	2.059 ± 0.010	-194.6 ± 1.7	0.0702
$K_2^*(1430)^-$	1.150 ± 0.009	-41.5 ± 0.4	0.0221
$K^{*}(1410)^{-}$	0.496 ± 0.011	83.4 ± 0.9	0.0026
$K^{*}(1680)^{-}$	1.556 ± 0.097	-83.2 ± 1.2	0.0016
$K^{*}(892)^{+}$	0.139 ± 0.002	-42.1 ± 0.7	0.0046
$K_0^*(1430)^+$	0.176 ± 0.007	-102.3 ± 2.1	0.0005
$K_{2}^{*}(1430)^{+}$	0.077 ± 0.007	-32.2 ± 4.7	0.0001
$K^{*}(1410)^{+}$	0.248 ± 0.010	-145.7 ± 2.9	0.0007
$K^{*}(1680)^{+}$	1.407 ± 0.053	86.1 ± 2.7	0.0013
$\rho(770)$	1 (fixed)	0 (fixed)	0.2000
$\omega(782)$	0.0370 ± 0.0004	114.9 ± 0.6	0.0057
$f_2(1270)$	1.300 ± 0.013	-31.6 ± 0.5	0.0141
$\rho(1450)$	0.532 ± 0.027	80.8 ± 2.1	0.0012
$\pi\pi$ S-wave			0.1288
β_1	4.23 ± 0.02	164.0 ± 0.2	
β_2	10.90 ± 0.02	15.6 ± 0.2	
β_3	37.4 ± 0.3	3.3 ± 0.4	
β_4	14.7 ± 0.1	-8.9 ± 0.3	
f_{11}^{prod}	12.76 ± 0.05	-161.1 ± 0.3	
f_{12}^{prod}	14.2 ± 0.2	-176.2 ± 0.6	
f_{13}^{prod}	10.0 ± 0.5	-124.7 ± 2.1	
$K\pi$ S-wave	Parameters		
$M(MeV/c^2)$	1461.7 ± 0.8		
$\Gamma(\text{MeV}/c^2)$	268.3 ± 1.1		
F	0.4524 ± 0.005		
$\phi_F(rad)$	0.248 ± 0.003		
R	1(fixed)		
$\phi_R(rad)$	2.495 ± 0.009		
$a(\text{GeV}/c^{-1})$	0.172 ± 0.006		
$r(GeV/c^{-1})$	-20.6 ± 0.3		
K*(892)	Parameters		
$M_{K^{*}(892)}(MeV/c^{2})$	893.68 ± 0.04		
$\Gamma_{K^*(892)}(MeV/c^2)$	47.49 ± 0.06		

M. Starič (IJS)

D⁰-mixing and CPV in Charm at Belle

Quy Nhon, 27.7.-2.8., 2014

13 / 22

 $\square D^0 \to K_s^0 \pi^+\pi^-$: Results

Fit type	Parameter	Fit result
No CPV	x(%)	$0.56 \pm 0.19^{+0.03}_{-0.09}{}^{+0.06}_{-0.09}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.06}$
CPV	x(%)	$0.56 \pm 0.19^{+0.04}_{-0.08}{}^{+0.06}_{-0.08}$
	y(%)	$0.30 \pm 0.15^{+0.04}_{-0.05}{}^{+0.03}_{-0.07}$
	q/p	$0.90^{+0.16}_{-0.15}{}^{+0.05}_{-0.04}{}^{+0.06}_{-0.05}$
	$\arg(q/p)(^\circ)$	$-6 \pm 11 \pm 3^{+3}_{-4}$

error order: statistics, systematics, Dalitz model

 \leftarrow Best fit point, 68.3% and 95% contours

```
no-mixing point at 2.5\sigma
no evidence for CPV
```

Quy Nhon, 27.7.-2.8., 2014 14 / 22

Time-integrated measurements (A_{CP})

• Asymmetry in time-integrated decay rates of $D^0 o f$ and $\overline{D}^0 o \overline{f}$

$$A_{CP}^{f} = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to \overline{f})}$$

Raw asymmetry

$$A_{\text{raw}} = \frac{N - \overline{N}}{N + \overline{N}} = A_D + A_{\epsilon}^f + A_{CP}^f$$

- A_D production asymmetry
- A_{ϵ}^{f} asymmetry in efficiencies
- Production asymmetry at B-factory
 - odd function of CMS polar angle $A_D \equiv A_{FB}(\cos\theta^*)$
 - can easily be disentangled

$$A_{CP} = \frac{A_{raw}^{cor}(\cos\theta^*) + A_{raw}^{raw}(-\cos\theta^*)}{2}$$
$$A_{FB} = \frac{A_{raw}^{cor}(\cos\theta^*) - A_{raw}^{cor}(-\cos\theta^*)}{2}$$

M. Starič (IJS)

Quy Nhon, 27.7.-2.8., 2014

15 / 22

\mathcal{G} Detection asymmetries \mathcal{A}^f_ϵ

- Asymmetries in detection efficiencies can be measured with sufficient precision using CF decays (CPV is very unlikely)
 - must be performed in bins of relevant phase-spaces
 - requires production asymmetries to be known

ightarrow at B-factory: $A_D \equiv A_{FB}(cos heta^*)$

- Slow pions: from tagged and untagged $D^0 o K^- \pi^+$ decays
- Kaons: from decays $D^0 \to K^- \pi^+$ and $D^+_{s} \to \phi \pi^+$
- Pions: from decays $D^+ o K^- \pi^+ \pi^+$ and $D^0 o K^- \pi^+ \pi^0$

$\begin{array}{c} \swarrow \\ \blacksquare \\ A_{CP} \text{ in } D^0 \to \pi^0 \pi^0 \text{ and } D^0 \to K^0_S \pi^0 \qquad (966 \text{ fb}^{-1}) \end{array}$

PRL 112, 211601 (2014)

- Flavor tag with $D^{*+}
 ightarrow D^0 \pi^+$
- Raw asymmetry:

$$\mathcal{A}_{\mathrm{raw}} = \mathcal{A}_{CP} + \mathcal{A}_{FB} + \mathcal{A}^{\pi_{\mathrm{slow}}}_{\epsilon} \ (+ \ \mathcal{A}^{\mathcal{K}^0}_{\mathrm{mat}})$$

- Last term due to different strong interactions of K^0/\bar{K}^0 in detector material $A_{\rm mat}^{K^0} = -0.11\%$, PRD 84, 111501 (2011)
- D^0/\bar{D}^0 yields from fit to ΔM distributions in bins of $(\cos \theta^*, p_T^{\pi_s}, \cos \theta^{\pi_s}) \rightarrow 10 \times 7 \times 8$
- Results consistent with no CPV:

$$egin{aligned} &\mathcal{A}_{CP}^{\pi^0\pi^0} = (-0.03\pm0.64\pm0.10)\% \ &\mathcal{A}_{CP}^{K_S^0\pi^0} = (-0.21\pm0.16\pm0.07)\% \end{aligned}$$

- Modes with K_S^0 :
 - CPV due to K^0 -mixing: -0.34%,

PRL 109, 021601 (2012); 109, 119903(E) (2012)

M. Starič (IJS)

D⁰-mixing and CPV in Charm at Belle

Quy Nhon, 27.7.-2.8., 2014

17 / 22

Time-integrated measurements: Summary

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	paper
$D^0 o K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	arXiv:1212.1975 (2012)
$D^0 ightarrow \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	arXiv:1212.1975 (2012)
$D^0 o \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	PRL 112, 211601 (2014)
$D^0 o K^0_s \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	PRL 112, 211601 (2014)
$D^0 o K^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	PRL 106, 211801 (2011)
$D^0 o K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	PRL 106, 211801 (2011)
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$	PLB 662, 102 (2008)
$D^0 o K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	PRL 95, 231801 (2005)
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	PRL 95, 231801 (2005)
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	PRL 108, 071801 (2012)
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	PRL 107, 221801 (2011)
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	PRL 107, 221801 (2011)
$D^+ ightarrow K^0_s \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	PRL 109, 021601 (2012)
$D^+ ightarrow K_s^0 K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	JHEP 02, 98 (2013)
$D_s^+ ightarrow K_s^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	PRL 104, 181602 (2010)
$D^+_s ightarrow K^0_s K^+$	673	$+0.12 \pm 0.36 \pm 0.22$	PRL 104, 181602 (2010)

M. Starič (IJS)

 D^0 -mixing and CPV in Charm at Belle

Quy Nhon, 27.7.-2.8., 2014 18 / 22

- D^0 -mixing measurements in the three most sensitive decay modes were updated with the Belle final data set ($\sim 1 \ {\rm ab}^{-1}$)
 - $D^0 \rightarrow K^+ \pi^-$: 5.1 σ observation
 - $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$: 4.5 σ evidence in y_{CP}
 - $D^0 \to K^0_s \pi^+ \pi^-$: most stringent limits on x
- No evidence for indirect CP violation.
- *CP* violation was searched in many decay modes using time-integrated approach
 - no evidence found for CPV in the charm sector
 - can see CPV due to K^0 -mixing in $D^+ o K^0_S \pi^+$ decay

BaBar, Belle, CDF, CLEO, E791, FOCUS, LHCb

$$x = (0.41^{+0.14}_{-0.15})\%$$
$$y = (0.63^{+0.07}_{-0.08})\%$$

$$|q/p| = 0.93^{+0.09}_{-0.08}$$
$$\phi = (-8.7^{+8.7}_{-9.1})^{\circ}$$

ም.

M. Starič (IJS)

Quy Nhon, 27.7.-2.8., 2014 20 / 22

3

$\overset{\bullet}{\longrightarrow}$ backup: $D^0 \to K^+ K^-, \pi^+ \pi^-$: Resolution function

Resolution function (for binned fit)

- Constructed from normalized distribution of σ_t
 - Using 2 or 3 Gaussian PDF for each σ_t bin
- PDF parameters determined in each $\cos \theta^*$ bin by fitting the distribution of pulls $(t - t_{\rm gen})/\sigma_t$
 - widths σ_k^{pull} , fractions w_k

$$R(t) = \sum_{i=1}^{n_{\text{bin}}} f_i \sum_{k=1}^{n_g} w_k G(t; \mu_i, \sigma_{ik})$$

$$\sigma_{ik} = \frac{s_k}{\sigma_k} \sigma_k^{\text{pull}} \sigma_i \qquad \mu_i = \frac{t_0}{\sigma_i} + \frac{a(\sigma_i - \sum_{j=1} f_j \sigma_j)}{\sigma_j}$$

- Free parameters:
 - width scaling factors: s_k , $k = 1, ..., n_g$ ($n_g = 2$ or 3)
 - resolution function offset: t_0
 - slope to model asymmetry: a

M. Starič (IJS)

D⁰-mixing and CPV in Charm at Belle

Quy Nhon, 27.7.-2.8., 2014

014 21 / 22

🚰 backup: Measurement strategies

$$\frac{dN_{D^0 \to f}}{dt} \propto e^{-\Gamma t} \big| \langle f | \mathcal{H} | D^0 \rangle + \frac{q}{p} (\frac{y + ix}{2} \Gamma t) \langle f | \mathcal{H} | \overline{D}{}^0 \rangle \big|^2$$

- Wrong-sign semileptonic decays $(D^0 \to K^+ \ell^- \nu)$
 - WS only via mixing: $\langle f | \mathcal{H} | D^0
 angle = 0$
 - measures time integrated mixing rate $R_M = \frac{x^2 + y^2}{2} = \frac{N_{WS}}{N_{RS}}$
- Wrong-sign hadronic decays $(D^0 o K^+ \pi^-)$
 - WS via doubly Cabibbo suppressed (DCS) decays or mixing
 - interference between DCS and mixing (strong phase δ)
 - measures $x' = x \cos \delta + y \sin \delta$, $y' = y \cos \delta x \sin \delta$
- Decays to CP eigenstates $(D^0
 ightarrow {\cal K}^+ {\cal K}^-, \pi^+ \pi^-)$
 - if no direct CPV: $\langle f | \mathcal{H} | \overline{D}^0 \rangle = \langle f | \mathcal{H} | D^0 \rangle$
 - measures y
- Decays to self-conjugate states $(D^0 o K^0_s \pi^+ \pi^-)$
 - time dependent Dalitz plot analysis
 - measures x and y

M. Starič (IJS)

Quy Nhon, 27.7.-2.8., 2014