

Xth Recontres du Vietnam **Flavour Physics Conference** ICISE, Quy Nhon, Vietnam, 27th July – 2nd August 2014

Determination of the V_{tb} CKM element in single top production at Tevatron and LHC

Kate Shaw on behalf of the ATLAS, CMS, D0 and CDF Collaborations ATLAS Udine/ICTP Group

2

LHC and Tevatron

Large Hadron Collider

- Proton-proton collider
- Operated at a center of energy of 7 (8) TeV in 2011 (2012)
- Experiments ATLAS and CMS each collected up to 5 (20) fb⁻¹ of data

Tevatron

- Proton-antiproton collider
- Run II ended operation in 2011 at a center of mass energy of 1.96 TeV
- Experiments CDF and D0 each collected 10 fb⁻¹ of data.

Top Quark

- Top-quark is the most massive known fundamental particle
- It was discovered in 1995 at the Tevatron by CDF and D0
- Its mass is of the order of the electroweak symmetry breaking scale - probe for new physics

Flavour Physics Conference 28th July 2014

Δ

Single top production

• Single top production proceeds via electroweak interaction involving a tWb vertex

CKM matrix element |V_{tb}|

- Quark mixing described by unitary CKM matrix V_{CKM} $|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 = 1$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \equiv \hat{V}_{\rm CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- The matrix elements are determined from weak decays of the relevant quarks
 - Is the matrix 3 x 3?
 - Is there a fourth generation?
 - Does unitarity hold?

CKM matrix element |V_{tb}|

• Quark mixing described by unitary CKM matrix V_{CKM} $|V_{ub}|^2 + |V_{cb}|^2 + |V_{tb}|^2 = 1$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \equiv \hat{V}_{\rm CKM} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- $|V_{tb}|$ govern the decay rate of the top and its decay width to Wb
- Assuming there are three generations of quarks and applying the unitarity constraint $|V_{tb}|$ approaches unity

Directly Measuring |V_{tb}|

- The single top cross-section is directly proportional to the square of the coupling at the production vertex, thus proportional to $|V_{tb}|^2$
 - Assuming $|V_{tb}| >> V_{ts}$ and $|V_{tb}| >> V_{td}$
 - Assuming Wtb interaction is a SM-like left-handed weak coupling

 No dependence on unitarity of CKM matrix, thus a good test for unitarity and probe for fourth quark generation or BSM physics

t-channel

t-channel is the dominant production mode for single top at the LHC and the Tevatron

Analysis based on leptonically decaying W $t \rightarrow Wb \rightarrow b\ell \nu$, Dominant backgrounds are QCD-mulitjets, W+jets and Z+jets

CMS: t-channel

Constraints placed on $|V_{tb}|$ using the measured cross-section of single top production in the t-channel with 7^[1] and 8^[2] TeV data

Event selection:

- One lepton
- At least two jets
- One b-tagged jet

Cross-section extracted from maximum-likelihood fits to the pseudorapidity of the light jet $|\eta_{i'}|$

 7 TeV analysis also used BDTs and NNs

7TeV: $|V_{tb}| = 1.04 \pm 0.09 (exp.) \pm 0.02 (th.)$ 8TeV: $|V_{tb}| = 0.979 \pm 0.045 (exp.) \pm 0.016 (th.)$

[1] JHEP 12 (2012) 035, TOP-11-021 [2] JHEP 06 (2014) 090, TOP-12-038

$$\begin{split} |V_{tb}| &= 0.998 \pm 0.038 \, (\text{meas.}) \pm 0.016 (\text{th.}) \\ 0.92 &< |V_{tb}| < 1 \, @\, 95\% \, \text{confidence level} \qquad (\,7\text{+}8 \, \text{TeV}). \end{split}$$

9

Most stringent

lower limit

28th July 2014

-lavour Physics Conference

[1] arXiv: 1406.7844 [2] ATLAS-CONF-2014-007

ATLAS: t-channel

|V_{tb}| determined using the measured combined (aMC@NLO extrapolated) cross-section of t-channel single top production in lepton
+jets channel with 7^[1] (8^[2])TeV data

s-channel

s-channel has a small cross-section at the LHC and Tevatron

Analysis based on leptonically decaying W $^{\circ}t \rightarrow Wb \rightarrow b\ell\nu$, Dominant backgrounds are W+jets, QCD-mulitjets and ttbar

D0: s- and t-channel

Lower limit defined on $|V_{tb}|$ using the measured cross-section of single top production in the s+t combined channel with 1.96 TeV data

Event selection:

- One lepton
- Two or three jets
- One or two b-tagged jet
- Missing Et

Multivariate methods applied to data

- Boosted Decision Trees (BDT)
- Bayesian Neutral Network (BNN)
- Matrix Element probability calculations

Optimised to measure s- and t- channel independently

 $|V_{tb}| = 1.12 + 0.09 - 0.08$ $0.92 < |V_{tb}| < 1 @ 95\%$ CL. *Most stringent lower limit*

[1] CDF PUB NOTE 10793 [2] CDF PUB NOTE 11033

CDF: s- and t-channel

Lower limit defined on $|V_{tb}|$ combing single top production in the lvbb^[1] and METbb^[2] s+t combined channel with 1.96 TeV data

Event selection for METbb recovering non-reconstructed leptons and W decay to tau (hadronic)

- Lepton veto

Combination of METbb & lvbb

- At least two jets (one b-tagged) Missing Et mbination of METbb & Ivbb Product of likelihoods Simultaneously vary correlated uncertainties

0.84 < |V_{tb}| < 1 @ 95% CL.

Event selection for lvbb^[1]

- One lepton
- Two or three jets (one b-tagged)
- Missing Et

Wt associated production

Associated Wt production very small at Tevatron, but significant at LHC

Production of special interest because of it sensitivity to non-SM couplings of the Wtb vertex

While being relatively insensitive to scenarios that affect the other single top top quark production channels

Leading order

Analysis is based on both W-bosons decaying leptonically Dominant background is ttbar

 $t \rightarrow Wb \rightarrow b\ell\nu$

[1] PRL 112 (2014) 231802, CMS-TOP-12-040 [2] ATLAS_CONF-2013-100

Wt associated production

|V_{tb}| determined using measured cross-section of associated production of a single top quark and a W boson at 8 TeV where both W-bosons decay leptonically

Summary

$|V_{tb}|$ determination in single top production without unitarity constraint

	ch.	< V _{tb}	Vtb measured value
CDF (1.96 TeV)	s+t	0.84	
D0 (1.96 TeV)	s+t	0.92	1.12 +0.09 - 0.08
CMS (7+8 TeV)	t	0.92	0.998 ± 0.038 (exp.) ± 0.016 (th.)
ATLAS (7 (8) TeV)	t	0.88 (0.78)	1.02 ± 0.07 (0.97 +0.09 - 0.10)
CMS	Wt	0.78	1.03 ± 0.12 (exp.) ± 0.04 (th.)
ATLAS	Wt	0.72	1.10 ± 0.12 (exp.) ± 0.03 (th.)

Back up

Measuring |V_{tb}|

Indirect measurement

- Assuming the unitarity of the CKM matrix, the ratio of branching fractions can be used to set limits on $|V_{tb}|$

$$R = \mathcal{B}(t \to Wb) / \mathcal{B}(t \to Wq) = |V_{tb}|^2 / (\sum_q |V_{tq}|^2) = |V_{tb}|^2$$