Constraining the CKM matrix at LHCb

Manuel Schiller

on behalf of LHCb

Nikhef

July 28th, 2014

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014

1/36 LHCb

introduction

constraining the CKM matrix at LHCb

- LHCb is all about *B* mesons; naturally we measure Δm_d , Δm_s
- LHCb is especially competitive in angles:
 - β_s from $b \rightarrow c\bar{c}s$ transitions

• e.g. $B_s^0 \rightarrow J/\psi\phi, J/\psi KK, J/\psi\pi\pi$ (well, ϕ_s really)

- $\sin(2\beta)$ from $B^0 \rightarrow J/\psi K^0_{S}$ [arXiv:1211.6093]
- γ from tree-level decays
 - time-integrated: $B \rightarrow DX$ -type measurements (ADS/GLW & GGSZ methods)

• time-dependent: $B^0 \to D\pi$, $B_s^0 \to D_s K$

LHCD

news from β_s

news from β_s

■ took 3 fb⁻¹ of data during run 1, results becoming available ■ example: $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ [arXiv:1405.4140]

- sensitive to mixing phase ϕ_s assuming no penguin pollution, $\phi_s = -2\beta_s$
- fully tagged analysis
- $\pi^+\pi^-$ spectrum contains different contributions, so need
 - modelling in $m_{\pi^+\pi^-}$
 - full angular analysis to disentangle different angular momentum contributions

news from β_s

News from β_s

 γ measurements

γ measurements

M. Schiller (Nikhef) Co

Constraining the CKM matrix at LHCb

July 28th, 2014

2014 5/36

LHCD

 γ from trees

γ measurements: the present

 $\blacksquare \ \gamma$ is least well measured angle in unitarity triangle

- needed for New Physics predictions, SM value can be measured from tree-level decays
- avg. from dir. meas.: $\gamma = (70.0^{+7.7}_{-9.0})^{\circ}$ (Moriond 2014, prel.)
- without dir. measurements in fit: $\gamma = (66.4^{+1.2}_{-3.3})^{\circ}$
- \Rightarrow still some way to go to bridge "sensitivity gap"

γ from trees

measurements from tree decays

involve measuring interference between two decay paths, one involves V_{ub}, since γ = arg (-V_{ud}V^{*}_{ub})

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• e.g. "workhorse" of time-integrated γ measurements: $B^- \longrightarrow f_{D^0} K^-$

from trees: main methods

time-integrated measurement methods

GLW

Gronau, London, Wyler, [Phys. Lett. B 253, 483 (1991), Phys. Lett. B 265, 172 (1991)]

ADS

Atwood, Dunietz, Soni [Phys. Rev. Lett. 78, 3257 (1997), Phys. Rev. D 63, 036005 (2001)]

GGSZ/Dalitz

Giri, Grossman, Soffer, Zupan [Phys. Rev. D. 68, 054018 (2003)]

time-dependent measurement methods, e.g. $B_s \rightarrow D_s K$

Aleksan, Dunietz, Kayser [Z. Phys. C, 54 (1992), p. 653], Fleischer [arXiv:hep-ph/0304027v2]

time-integrated of

time-integrated γ

time-integrated γ

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014

9/36

- ₹ 🖬 🕨

time-integrated γ

NGGSZ/Dalitz method: $D^0 \longrightarrow K_S^0 \pi^+ \pi^-$

- *D* decay amplitude $f(m_+^2, m_-^2)$ depends only on Dalitz variables $m_{\pm}^2 = (p_{K_S^0}^{\mu} + p_{\pi^{\pm}}^{\mu})^2$
- $\Gamma(B^- \longrightarrow (K_S^0 \pi^+ \pi^-)_D K^-) \sim |f(m_+^2, m_-^2) + r_B e^{i(\delta_B \gamma)} f(m_-^2, m_+^2)|^2$

⇒ need D decay model or measurement of density and phase over Dalitz plane (charm factories)

■ fit for $x_{\pm} = r_B \cos(\gamma \pm \delta_B)$, $y_{\pm} = r_B \sin(\gamma \pm \delta_B)$, y_{\pm}

CCSZ: 3 fb⁻¹ analysis of $B^- \rightarrow D^0(K^0_S hh)K^-$ ($h = \pi, K$)

time-integrated γ

- count events in each Dalitz bin (N_i^{\pm})
- get *D* strong phase in bins from CLEO (c_i, s_i)
- check fraction of *D* in bin *i* with $B^0 \to D^{*-}\mu^+\nu$ on data, correct with ratio $B^- \to D^0(K^0_Shh)K^-/B^0 \to D^{*-}\mu^+\nu$ from simulation $(f_{\pm i})$

$$N_i^{\pm} \sim f_{\pm i} + r_B^2 f_{\mp i} + 2\sqrt{f_{\pm i}f_{\mp i}} (x_{\pm}c_i \pm y_{\pm}s_i)$$

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014 12 / 36

time-dependent γ

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014

014 13/36

N time-dependent $B_s \longrightarrow D_s K$: basics

■ interference between mixing and decay:

- not colour-suppressed ⇒ large interference
- weak phases γ , ϕ_m (mixing), strong phase δ
- sensitive to $\gamma + \phi_m$, but ϕ_m small effect [arXiv:1304.2600]
- measure 4 decay rates:

$$\Gamma_{B^0_s \longrightarrow D^-_s K^+}(t), \ \Gamma_{B^0_s \longrightarrow D^+_s K^-}(t), \ \Gamma_{\overline{B^0_s} \longrightarrow D^-_s K^+}(t), \ \Gamma_{\overline{B^0_s} \longrightarrow D^+_s K^-}(t)$$

$A_{c}^{\Delta\Gamma} K$ decay rate equations

work out decay of B_s^0 , \overline{B}_s^0 to final states $f(D_s^-K^+)$, $\overline{f}(D_s^+K^-)^1$:

$$\begin{split} \lambda_{D_s^- K^+} &= \frac{V_{tb}^* V_{ts}}{V_{tb} V_{ts}^*} \frac{V_{ub} V_{cs}^*}{V_{cb}^* V_{us}} \left| \frac{A_{\tilde{f}}}{A_{f}} \right| e^{i\delta} \\ &= |\lambda_{D_s^- K^+}| e^{i(\delta - (\gamma + \phi_m))} \\ 1/\lambda_{D_s^+ K^-} &= \frac{V_{tb} V_{ts}^*}{V_{tb}^* V_{ts}} \frac{V_{ub}^* V_{cs}}{V_{cb} V_{us}^*} \left| \frac{A_{\tilde{f}}}{A_{f}} \right| e^{i\delta} \\ &= |\lambda_{D_s^- K^+}| e^{i(\delta + (\gamma + \phi_m))} \end{split}$$

$$\frac{d^{2}B_{3}^{0} \rightarrow f^{(t)}}{dt e^{-\Gamma t}} \sim |A_{f}|^{2}(1+|\lambda_{f}|^{2}) \quad \left(\cosh\left(\frac{\Delta\Gamma t}{2}\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma t}{2}\right) + C_{f}\cos\left(\Delta mt\right) - S_{f}\sin\left(\Delta mt\right)\right) \\ \frac{d^{2}B_{3}^{0} \rightarrow f^{(t)}}{dt e^{-\Gamma t}} \sim |A_{f}|^{2} \left|\frac{p}{q}\right|^{2}(1+|\lambda_{f}|^{2}) \quad \left(\cosh\left(\frac{\Delta\Gamma t}{2}\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma t}{2}\right) - C_{f}\cos\left(\Delta mt\right) + S_{f}\sin\left(\Delta mt\right)\right) \\ \frac{d^{2}B_{3}^{0} \rightarrow f^{(t)}}{dt e^{-\Gamma t}} \sim |A_{f}|^{2}(1+|\bar{\lambda}_{f}|^{2}) \quad \left(\cosh\left(\frac{\Delta\Gamma t}{2}\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma t}{2}\right) - C_{f}\cos\left(\Delta mt\right) + S_{f}\sin\left(\Delta mt\right)\right) \\ \frac{d^{2}B_{3}^{0} \rightarrow f^{(t)}}{dt e^{-\Gamma t}} \sim |\bar{A}_{f}|^{2} \left|\frac{q}{p}\right|^{2}(1+|\bar{\lambda}_{f}|^{2}) \quad \left(\cosh\left(\frac{\Delta\Gamma t}{2}\right) + A_{f}^{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma t}{2}\right) + C_{f}\cos\left(\Delta mt\right) - S_{f}\sin\left(\Delta mt\right)\right)$$

¹use convention where $\Delta m_s = m_H - m_L > 0$ and $\Delta \Gamma = \Gamma_H = \Gamma_H > 0$ (i) $\Gamma_H > 0$ (i) $\Gamma_H > 0$ July 28th, 2014 15 / 36

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

$B_s^0 \rightarrow D_s K$: strategy

- disentangle signal and background with multidimensional fit (MDFitter, m_{B_s} , m_{D_s} , PID of K)
- two fitter frameworks for the time-dependent part (time, time error, mistag)
 - sFit: uses sWeights to subtract background on a statistical basis
 - cFit: classical fit, all BG described with full physics PDF

h, 2014 16 /

$\overline{D_{s}K}$: results from 2012 CONF

time-dependent -

- to get things right, you need to understand:
 - backgrounds
 - acceptance $\epsilon(t)$: else $A_f^{\Delta\Gamma}$, $A_{\bar{f}}^{\Delta\Gamma}$ biased
 - decay time resolution σ_t : else C_f, S_f, S_f biased
 - flavour tagging (produced as B_s^0/\overline{B}_s^0): else $C_f, S_f, S_{\overline{f}}$ biased
- here's our preliminary result (2011 data, $1fb^{-1}$)

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014

mproving $B_s \rightarrow D_s K$

disentangle signal and background better: use m_{B_c} , m_{D_c} , particle ID signal yield: from 1390 ± 98 to 1809 ± 52 on same data set!

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

mproving $B_s \rightarrow D_s K$

- better flavour tagging: from $\epsilon_{tag}D^2 \sim 1.9\%$ to $\epsilon_{tag}D^2 \sim 5.1\%$
- for cFit: full description of partially reconstructed/misid. BGs
 - reconstructed time off by $(m/p)_{reco}/(m/p)_{true}$
 - use k-factor correction (from simulation)

improving $B_s \rightarrow D_s K$

• extract γ based on cFit results

 $\gamma = (115^{+28}_{-43})^{\circ}$ $\delta = (3^{+19}_{-20})^{\circ}$ $r_{D_sK} = 0.53^{+0.17}_{-0.16}$

• sensitivity:
$$\sigma(\gamma) \approx 36^{\circ} \sqrt{\text{fb}^{-1}}$$

 \rightarrow competitive!

■ plan to add more final states for 3fb^{-1} , also with neutrals like $B_s^0 \rightarrow D_s^*(D_s \gamma) K$

LHCD

LHCb is working on multiple fronts to constrain the CKM matrix

- run 1 of the LHC was exciting, and many good results are out
 - first results for ϕ_s from the full 2011+2012 data set
 - first results for γ from the full 2011+2012 data set
 - first measurement $\gamma = (115^{+28}_{-43})^{\circ}$ from $B_s^0 \rightarrow D_s K$
- there are many good things ahead, too:
 - $B_s \rightarrow J/\psi \phi$ on the full run 1 data
 - more γ sensitive measurements will be updated to the full 3fb⁻¹
- last but not least:

onclusion

- improve sensitivity by adding new final states to analyses
- run 2 and the LHCb upgrade are ahead!
- $\rightarrow\,$ LHCb is a versatile tool to constrain the CKM matrix, and exciting times are ahead!

N backup slides

backup slides

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014

1 22 / 36

GLW method: *D* to *CP* eigenstate $(\pi^+\pi^- \text{ or } K^+K^-)$

 $\Gamma(B^{\mp} \longrightarrow (\pi^{+}\pi^{-})_{D^{0}}K^{\mp}) \sim 1 + r_{B}^{2} + 2r_{B}\cos(\delta_{B} \mp \gamma)$ 2 observables: $A_{CP+} = \frac{\Gamma(B^{-} \longrightarrow (\pi^{+}\pi^{-})_{D^{0}}K^{-}) - \Gamma(B^{+} \longrightarrow (\pi^{+}\pi^{-})_{D^{0}}K^{+})}{\Gamma(B^{-} \longrightarrow (\pi^{+}\pi^{-})_{D^{0}}K^{-}) + \Gamma(B^{+} \longrightarrow (\pi^{+}\pi^{-})_{D^{0}}K^{+})} = \frac{2r_{B}\sin\delta_{B}\sin\gamma}{1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma}$ $R_{CP+} = 2\frac{\Gamma(B^{-} \longrightarrow (\pi^{+}\pi^{-})_{D^{0}}K^{-}) + \Gamma(B^{+} \longrightarrow (\pi^{+}\pi^{-})_{D^{0}}K^{+})}{\Gamma(B^{-} \longrightarrow D^{0}K^{-}) + \Gamma(B^{+} \longrightarrow D^{0}K^{+})} = 1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma$ $3 \text{ unknowns } (r_{B}, \delta_{B}, \gamma)$ $\implies \text{ need to combine with other method(s)} \quad \text{ or } A = \frac{2\pi}{1 + r_{B}^{2} + 2r_{B}\cos\delta_{B}\cos\gamma}$

ADS method: $D^0 \longrightarrow K\pi$

■ 4 decay rates: ■ $\Gamma(B^{\mp} \longrightarrow (K^{\mp}\pi^{\pm})_{D^{0}}K^{\mp}) \sim 1 + (r_{B}r_{D})^{2} + 2r_{B}r_{D}\cos(\delta_{B} - \delta_{D}^{K\pi} \mp \gamma)$ ■ $\Gamma(B^{\mp} \longrightarrow (K^{\pm}\pi^{\mp})_{D^{0}}K^{\mp}) \sim r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D}^{K\pi} \mp \gamma)$ ■ 2 observables: ■ $A_{ADS} = \frac{\Gamma(B^{-} \rightarrow (K^{+}\pi^{-})_{D^{0}}K^{-}) - \Gamma(B^{+} \rightarrow (K^{-}\pi^{+})_{D^{0}}K^{+})}{\Gamma(B^{-} \rightarrow (K^{+}\pi^{-})_{D^{0}}K^{-}) + \Gamma(B^{+} \rightarrow (K^{-}\pi^{+})_{D^{0}}K^{+})} = \frac{2r_{B}r_{D}\sin(\delta_{B} + \delta_{D}^{K\pi})\sin\gamma}{r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D}^{K\pi})\cos\gamma}$ ■ $R_{ADS} = \frac{\Gamma(B^{-} \rightarrow (K^{+}\pi^{-})_{D^{0}}K^{-}) - \Gamma(B^{+} \rightarrow (K^{-}\pi^{+})_{D^{0}}K^{+})}{\Gamma(B^{-} \rightarrow (K^{-}\pi^{+})_{D^{0}}K^{-}) + \Gamma(B^{+} \rightarrow (K^{+}\pi^{-})_{D^{0}}K^{+})} = r_{B}^{2} + r_{D}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D}^{K\pi})\cos\gamma}$ ■ 3 unknowns shared with GLW $(r_{B}, \delta_{B}, \gamma)$, 2 new ones $(r_{D}, \delta_{D}^{K\pi})$ \implies need input on $r_{D}, \delta_{D}^{K\pi}$, and combine with other method(s)

ADS/GLW/GGSZ measurements at LHCb

LHCb has a wide variety of ADS/GLW measurements:

- classic ADS/GLW: $B^- \to D^0 h^ (h = \pi, K, D^0 \to K^+ K^-, \pi^+ \pi^-, K^\mp \pi^\pm)$ [1203.3662]
- ADS $B^- \to D^0 h^ (h = \pi, K, D^0 \to K^{\pm} \pi^{\mp} \pi^+ \pi^-, \pi^{\pm} K^{\mp} \pi^+ \pi^-)$ [1303.4646]
- ADS/GLW $B^0 \to D^0 K^{*0} (D^0 \to K^+ K^-, K^{\mp} \pi^{\pm})$ [1212.5205]
- $ADS/GLW B^- \rightarrow D^0 K^- \pi^+ \pi^- (D^0 \rightarrow K^- \pi^+, K^+ K^-, \pi^+ \pi^-)$ [LHCb-CONF-2012-021]
- ADS/GLW $B^- \rightarrow D^0 h^- \pi^+ \pi^ (h = K, \pi, D^0 \rightarrow K^+ K^-, \pi^+ \pi^-, K^{\mp} \pi^{\pm})$ (in preparation)

GGSZ measurement efforts are gaining momentum, too...

■ classic $B^- \to D^0(K_s^0 h^+ h^-) K^ (h = K, \pi)$ [1209.5869], [LHCb-CONF-2013-004]

$$B^- \rightarrow D^0(K_s^0 h^+ h^-) h^- \pi^+ \pi^- (h = K, \pi)$$

(in preparation)

backup slides $B^{\pm} \rightarrow DK^{\pm}$ combination (incl. 2012 data)

combination: $B^{\pm} \rightarrow DK^{\pm}$ incl. 2012 data

LHCb γ combination: $B^{\pm} \rightarrow DK^{\pm}$ combination including 2012 data

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014

combination: approach

use various (fit) parameters α_i :

$B^{\pm} \rightarrow Dh^{\pm}$	<i>P</i> -violating weak phase	γ
	$\Gamma(B^- \rightarrow D^0 K^-) / \Gamma(B^- \rightarrow D^0 \pi^-)$	R _{cab}
$B^{\pm} \rightarrow D\pi^{\pm}$	$A(B^- \rightarrow \overline{D^0}\pi^-)/A(B^- \rightarrow D^0\pi^-) = r_B^{\pi} e^{i(\delta B^{\pi} - \gamma)}$	$r_B^{\pi}, \delta_B^{\pi}$
$B^{\pm} \rightarrow DK^{\pm}$	$A(B^- \to \overline{D^0}K^-)/A(B^- \to D^0K^-) = r_B e^{i(\delta_B - \gamma)}$	r_B, δ_B
$D \to K^{\pm} \pi^{\mp}$	$A(D^0 \rightarrow \pi^- K^+)/A(D^0 \rightarrow K^- \pi^+) = r_{K\pi} e^{-i\delta} K\pi$	$r_{K\pi}, -\delta_{K\pi}$
$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	amplitude ratio and effective strong phase diff.	$r_{K3\pi}, -\delta_{K3\pi}$
	coherence factor	$\kappa_{K3\pi}$
direct CP	in $D \to K^+ K^-$	$A_{CP}^{D \to KK}$
asymmetries	in $D o \pi^+ \pi^-$	$A_{CP}^{D \to \pi \pi}$
Other D system	D mixing	x_D, y_D
parameters	Cabibbo-favoured rates	$\Gamma(D \rightarrow K\pi)$
		$\Gamma(D \rightarrow K\pi\pi\pi)$

frequentist approach:

- express various observables \vec{A}_i in terms of fit parameters
- use a χ^2 -derived likelihood contribution f_i for the various measurements

$$f_i \propto \exp\left(-\chi^2
ight) \propto \exp\left(-(ec{A}_i(ec{lpha}_i) - ec{A}_{i, ext{obs}})^T V_i^{-1} \left(ec{A}_i(ec{lpha}_i) - ec{A}_{i, ext{obs}}
ight)
ight)$$

then combine:

$$\mathcal{L}(\vec{\alpha}) = \prod_{i} f_i(\vec{A}_i^{\text{obs}} | \vec{A}_i(\vec{\alpha}_i))$$

- LHCb GGSZ model-independent measurement $B^{\pm} \rightarrow DK^{\pm}$ with $D \longrightarrow K_{\rm s}^0 h^+ h^- (1 \, {\rm fb}^{-1}, 2011)$ [arXiv:1209.5869]
 - strong phase of D decay over Dalitz plane taken from CLEO [arXiv:0903.1681]
 - inputs: x_+, y_+
- GLW/ADS modes $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow h^{+}h^{-}$ (1 fb⁻¹, 2011)

[Phys. Lett. B712 (2012) 203] [arXiv:1203.3662]

inputs: $A_{\nu}^{K\pi}$, A_{ν}^{KK} , $A_{\nu}^{\pi\pi}$, R_{ν}^{-} , R_{ν}^{+}

- ADS modes $B^{\pm} \rightarrow DK^{\pm}$ with $D \rightarrow K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$ (1 fb⁻¹. 2011) [LHCb-CONF-2012-030]
 - strong phase variation over D phase space absorbed in coherence factor $\kappa_{K3\pi}$
 - inputs: $A_{K}^{K3\pi}$, $R_{K-}^{K3\pi}$, $R_{K-}^{K3\pi}$
- LHCb GGSZ model-independent measurement $B^{\pm} \rightarrow DK^{\pm}$ with $D \longrightarrow K_{\rm s}^0 h^+ h^- (2 \, {\rm fb}^{-1}, 2012)$ [LHCb-CONF-2013-004]

$B^{\pm} \rightarrow DK^{\pm}$ results: r_B, δ_B, γ

plug-in method

 evaluating confidence level for a parameter (e.g. γ), we use χ²(α) = −2 log L(α)

• call best fit point $\vec{\alpha}_{\min}, \chi^2_{\min} = \chi^2(\vec{\alpha}_{\min})$

• call best fit point $\vec{\alpha}'_{min}(\gamma_0)$ with γ fixed to $\gamma = \gamma_0$

• get profile LH $\hat{\mathcal{L}}(\gamma_0) = \exp(-\chi^2(\vec{\alpha}'_{\min})/2)$

- for each value of γ_0 , get *p*-value (1-CL) with a MC procedure:
 - **1** calculate test statistic $\Delta \chi^2 = \chi^2(\vec{\alpha}'_{\min}) \chi^2(\vec{\alpha}_{\min}) \ge 0$ for data
 - **2** generate a set of toys \vec{A}_{toy} with parameters set to \vec{a}'_{min}
 - **3** for each toy, calculate $\Delta \chi^{2'}$ as in step 1
 - $4 \quad 1 CL = N(\Delta \chi^2 < \Delta \chi^{2'}) / N_{\text{toy}}$

lulv 28th. 2014

Image: The second se

systematic uncertainties

plots and confidence limits above need to be corrected for

- undercoverage
 - plug-in method does not guarantee coverage
 - evaluate actual coverage using toys: determine conf. intervals in toys, count how often the true value is inside

α	$1\sigma (\eta = 0.6827)$	2σ ($\eta = 0.9545$)	3σ ($\eta = 0.9973$)
DK^{\pm} only	0.6646 ± 0.0067	0.9453 ± 0.0032	0.9911 ± 0.0013
$D\pi^{\pm}$ only	0.6532 ± 0.0048	0.9492 ± 0.0022	0.9912 ± 0.0009
$DK^{\pm} \& D\pi^{\pm}$	0.6616 ± 0.0067	0.9586 ± 0.0028	0.9958 ± 0.0009

scale up conf. intervals in data by η/α

- correlations in systematic uncertainties for 2/4-body GLW/ADS modes
 - plots below assume zero correlations
 - need to correct by running toys with random correlation matrices
 - **B**^{\pm} \rightarrow *DK*^{\pm} unaffected, *B*^{\pm} \rightarrow *D* π^{\pm} largely affected
 - full combination needs confidence intervals scaled by a factor 1.07 (1.04 for second best intervals)

 $^{\pm} \rightarrow DK^{\pm}$: contours

July 28th, 2014

LHCD

time fit: flavour tagging

• need to know flavour at production: B_s or $\overline{B_s}$?

backup slides $B^{\pm} \rightarrow DK^{\pm}$ combination (incl. 2012 data)

- b quarks are produced in pairs
- can learn something from other B in the event, or fragmentation: opposite side tagging/same side tagging
 - can "guess" initial flavour $\epsilon_{tag} = 67.5\%$ of $D_s K$ events
 - guess wrong in about $\omega = 36.3\%$ of cases on average
 - effective tagging power $\epsilon (1 2\omega)^2 = 5.07\%$

use event-by-event mistag prediction to increase sensitivity

backup slides time-dependent $B_s \rightarrow D_s K$

N time-dependent $B_s \rightarrow D_s K$

time-dependent $B_s \rightarrow D_s K$

M. Schiller (Nikhef)

Constraining the CKM matrix at LHCb

July 28th, 2014

4 B 6 4 B 6

k-factors (1/2)

- lifetime is calculated along the lines of $t = |\vec{x}_{SV} \vec{x}_{PV}| \frac{m_{B_s}}{|\vec{p}|}$
- for partially reconstructed and misid'ed modes, we get $\frac{m_{B_s}}{|\vec{p}|}$ wrong
- idea: take correction factor from MC:

$$k=rac{(m_{B_s}/ert ec pert)_{true}}{(m_{B_s}/ert ec pert)_{reco}}$$

can correct by substitution $t \longrightarrow k \cdot t$

time-dependent $B_s \rightarrow D_s K$

Nk-factors (2/2)

put into generator(s) for D_sK/π (toy simulation)
 can also use it in cFit to get the BG description correct:

$$\frac{d\Gamma}{dt}(t;\Gamma,\Delta\Gamma,\Delta m)\longrightarrow \int dk P(k)\cdot \frac{d\Gamma}{dt}(t;k\Gamma,k\Delta\Gamma,k\Delta m)$$