Research on Event Search

Andrey Ustyuzhanin Yandex, NRC «Kurchatov Institute» Moscow, Imperial College, London

Quest for analysis sensitivity

Analysis Value Chain

Sources of better sensitivity

- 1. more powerful algorithms (e.g. BDT, Deep Neural Networks)
- 2. improved features (e.g. «isolation» variables or particle identification)
- 3. complex training scenarios (e.g. n-folding, ensembling, blending, cascading)

Price for sensitivity

- How do I check quality of event discriminating function?
- Overfitting?
- Correlations?
- Relevance of figure of merit to analysis significance?
- How do I deal with complexity?
- Estimate influence of model parameters
- Extra computation
- Organization (cross-checks, collaboration)

MVA Performance (ROC, Learning curve)

MVA algorithms: easy to find, hard to choose

Families:

- Boosted Decision Trees (BDT)
- Artificial Neural Network (ANN)
- Support Vector Machine (SVM)
- Clustering, Bayesian Networks, ...
- Implementations
- TMVA (60+ algorithms)
- NeuroBayes
- python scikit-learn
- R packages
- Private (Matrixnet, predict.io)
- XGBoost, ...

Figure-of-Merits Land

Efficiency flatness?

Complexity indicators

- 'I can't remember which version of the code I used to generate figure 13'
- 'The new student wants to reuse that model I published three years ago but he can't reproduce the figures'
- I thought I used the same parameters but I'm getting different results!?'
- 'It worked yesterday!'
- 'Why did I do that?'
- 'Where are events selected with previous version of reconstruction software?'

Complexity sources

- Domain (Physics)
- Datasources & formats
- Analysis strategy (http://bit.ly/SqDDE4)
- Analysis step details (algorithms)
- (Distributed) team communication

Analysis complexity

Case: $au o 3\mu$ (LHCb)

Repeat count:

10²

 10^2

10³

 10^{2}

 $|0\rangle$

 10^2

Trained models: ~1500

Requires dedicated framework!

Reproducible Experiment Platform (REP)

software infrastructure to support a collaborative ecosystem for computational science. It is a solution for team of researchers that allows

- running computational experiments on big shared datasets,
- bobtaining reproducible and repeatable results,
- comparing measurable result consistently.

REP features/requirements

- 1. research automation, i.e. defining modules that can be reused later on,
- 2. consistent automatic cross-check,
- 3. online visually enhanced shared interactive environment,
- 4. result reproducibility (code/data provenance),
- 5. support for existing standard modules,
- 6. scalability (performance increase as additional [hardware] resources are available),
- 7. [flat learning curve]

Web Search Workflow

Collaborative work redux

Total «freedom»

- Formal agreements
- Experiments repository
- share of experience, source code reuse
- data specification, parameters, version

- Regulative infrastructure
- Automated hypotheses testing
- 10s per week \Rightarrow 1000s per week

Skills for a physicist

REP for HEP

Online & Interactive

folding_scheme.fit(train_data_description)

report = folding_scheme.get_model_report()

folding scheme.predict(test file)

Support for ROOT & Python & TMVA

ROC

More details: http://bit.ly/1fCjEqg (tomorrow)

Cases

$$B_s \to \mu^+ \mu^-$$

$$B_s \to 4\mu$$

$$\tau \to 3\mu$$

$$B \to K^* \mu^+ \mu^-$$
...

Instead of Conclusion

- New source of tools & metrics: data science
- ...as well as source of complexity
- Research reproducibility = defeat of complexity
- Environment (http://bit.ly/1fCjEqg)
- Status: looking for new cases, adopters
- How to try?
- Hands-on introduction tomorrow at 16:15
- andrey.ustyuzhanin@cern.ch

Backup

N-folding, training scheme example

(works well for limited statistics)

Split data in N folds randomly

See the difference

Take i-th fold, train formula on remaining folds, apply to selected one