Xth Rencontres du Vietnam Flavour Physics Conference ICISE

Quy Nhon Vietnam – 27th July - 2rd August 2014

Probing BSM Physics with Rare B Decays @ BaBar

Marcello Rotondo

I.N.F.N. Padova

INFN

M.Rotondo

Rare B decays: New Physics probes

- CMS and ATLAS search for direct production of new particles predicted in many extensions of the Standard Model (SM)
- New particles also contribute to heavy mesons decays
 - Search for deviations from SM predictions due to virtual contributions of new heavy particles in loop processes
 - Complementary to the direct search at LHC
- The most interesting processes are those that are strongly suppressed in the SM: FCNC processes (but also LFV, CPV in B_{d.s} mixing...)
 - NP could increase the expectations by orders of magnitude
 - Rare B decays can probe mass scales beyond the direct reach of LHC

M.Rotondo

Rare B decays: New Physics probes

- CMS and ATLAS search for direct production of new particles predicted in many extensions of the Standard Model (SM)
- New particles also contribute to heavy mesons decays
 - Search for deviations from SM predictions due to virtual contributions of new heavy particles in loss processes

M.Rotondo

BaBar in a nutshell

- Operation: 05/1999-04/2008 (BaBar, PEP-II)
- e⁺e⁻ machines run at Y(4S) resonance:
 - Y(4S) decays only in B⁰B⁰ and B⁺B⁻ (very clean environment)
 - Cross section is relatively high: 1.06nb
 - Backgrounds from $e^+e^- \rightarrow q\underline{q}$ (~3 nb)

Kinematics of fully reconstructed B

Background discrimination

M.Rotondo

 $B \rightarrow X_{s} \ell^{+} \ell^{-}$

 "Measurement of the B→X_sℓ+ℓ⁻ branching fraction and search for direct CP violation from a sum of exclusive final states"

• Phys. Rev. Lett. 112, 211802 (2014)

Nucl.Phys.B802,40 (2008) Phys.Rev.D 54,882

$\mathsf{B} \to \mathsf{X}_{\mathsf{s}} \ell^+ \ell^- (1/4)$

- Sensitive to NP effects in photon, vector and axial-vector coupling
 - FCNC process forbidden at tree level: BF~10⁻⁶
 - NP enter at the SM level
- $1 < q^2 < 6 \text{ GeV}^2 \rightarrow BR_{SM} = (1.59 \pm 0.11) \cdot 10^{-6}$
- $q^2 > 14.4 \text{ GeV}^{2:} \rightarrow BR_{SM} = (0.24 \pm 0.07) \cdot 10^{-6}$
- Direct CP violation: SM predicts A_{CP}<< 1% in exclusive and inclusive transitions
- Large extent complementary to $B_s \rightarrow \mu^+ \mu^- b$

- Decay amplitudes expressed using OPE in terms of perturbatively calculable effective coefficients:
 - Short distance Wilson coefficients: C₇^{eff}, C₉^{eff}, C₁₀^{eff}
 - Theoretical uncertainties: ~7-30% (in different q² regions)

$B \rightarrow X_{s} \ell^{+} \ell^{-} (2/4)$

- Measurement performed using a sum of 20 fully reconstructed modes

 - 1 pion: K⁺π⁰, K⁺π⁻, K_sπ⁺, K_sπ⁰
 - 2 pions: K⁺π⁻π⁰, K⁺π⁻π⁻, K_sπ⁺π⁰, K_sπ⁺π⁻

Not used in the A_{CP} measurement

- Reconstructed states account for 70% of inclusive rate: extrapolation to total rate from MC (JETSET fragmentation and theoretical
- B decays to J/ ψ and $\psi(2S)$ have same final state particles: explicit mass vetoes applied \rightarrow vetoed events make excellent control sample
- $B \rightarrow X_s \ell^+ \ell^-$ yields extracted in hadronic mass (M_x) and q^2 $\frac{d\mathcal{BR}}{dq^2}$ $\frac{d\mathcal{BR}}{dM_x}$ \mathcal{BR} $\frac{dA_{CP}}{dq^2}$ bins

M.Rotondo

X_s modes

$\mathsf{B} \to \mathsf{X}_{\mathsf{s}} \ell^+ \ell^- (3/4)$

• Yields extracted in various $q^2 \& M_x$ bins by 2D (m_{ES}, L_R) fit

•
$$m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$$
 $\Delta E = E_B^* - E_{beam}^*$

 BB combinatorial background using a Likelihood Ratio (L_R) defined from outputs of eights BDTs exploiting kinematical and topological quantities

$$\mathsf{B} \to \mathsf{X}_{\mathsf{s}} \ell^+ \ell^- (4/4)$$

 Observed BR scaled to full rate based on simulation

$$\mathsf{BR} = (6.73 \begin{array}{c} +0.70 \\ -0.64 \end{array} \begin{array}{c} +0.34 \\ \pm 0.25 \end{array} \begin{array}{c} \pm 0.50 \end{array}) \cdot 10^{-6}$$

 $BR_{SM} = (4.6 \pm 0.8) \cdot 10^{-6}$

Huber et al. NPB802,40 (2008)

• I: 1 < q² < 6 GeV²

 $BR = (1.60^{+0.44}_{-0.39} + 0.17_{-0.13} \pm 0.18) \cdot 10^{-6}$

 $BR_{SM} = (1.59 \pm 0.11) \cdot 10^{-6}$

• II: q² above $\psi(2S)$ BR = $(0.57^{+0.16}_{-0.15} + 0.03_{-0.02} \pm 0.0) \cdot 10^{-6}$

 $BR_{SM} = (0.25 \pm 0.07) \cdot 10^{-6}$

M.Rotondo

$B \rightarrow K \pi \ell^+ \ell^- \& B \rightarrow X_s \ell^+ \ell^-$

LHCb measurement of observables
 "free" from Form Factor contributions

PRL111,191801(2013)

 Global fits to recent b → sll and b→ sγ data favor decreased value of Wilson coefficient C₉: indication of NP?

JHEP1305,043 (2013), PRD88,074002(2013)

M.Rotondo

- This leads to a reduced value of inclusive $B(B \rightarrow X_s \ell^+ \ell^-)$
- However, our measurement of BF at highq² does not support this hypothesis

 $B \rightarrow X_{s}\gamma$

 "Measurement of Direct CP asymmetry in B→X_sγ decays using sum of Exclusive decays"

• Submitted to Phys. Rev. D. arXiv: 1406.0534

M.Rotondo

$B \rightarrow X_{s} \gamma (2/4)$

- Measurement performed using a sum of 38 reconstructed modes
 - 16 self-tagged modes for A_{CP} measurement
- K and π using charge PID, veto $\pi^0/\eta \rightarrow \gamma\gamma$
- Selection criteria:
 - 1.6 < E_γ < 3.0 GeV
 - 0.6 < m_{Xs} < 2.0 GeV
 - ∆E > 0.15 GeV
 - M_{ES} > 5.24 GeV/c²
- Two multivariate classifiers to:
 - Select the best candidate
 - Reduce continuum background

Charge modes $K^0_S \; \pi^+ \; \gamma$ $K^+ \pi^0 \gamma$ K^+ π^+ $\pi^ \gamma$ $K^0_S \ \pi^+ \ \pi^0 \ \gamma$ K^+ π^0 π^0 γ $K^0_S \ \pi^+ \ \pi^- \ \pi^+ \ \gamma$ K^+ π^+ $\pi^ \pi^0$ γ $K^0_S \; \pi^+ \; \pi^0 \; \pi^0 \; \gamma$ $K^+ \eta \gamma$ $K^+ \ K^- \ K^+ \ \gamma$ Neutral modes $K^+ \pi^- \gamma$ K^+ $\pi^ \pi^0$ γ K^+ π^+ $\pi^ \pi^ \gamma$ K^+ $\pi^ \pi^0$ π^0 γ $K^+ \eta \pi^- \gamma$ $K^+ K^- K^-$

$B \rightarrow X_{s} \gamma (3/4)$

- Simultaneous m_{ES} fit of charged and neutral B
 - A_{CP} decomposed in three components:

- $A_{\rm CP} = A_{\rm peak} A_{\rm det} + D$
- A_{peak}: fitted asymmetry from raw fitted yields of m_{ES} distribution
- A_{det}:: detector asymmetry (due to efficiency difference in K+ and K-)
 - Extracted from m_{ES} side band A _{det}=(-1.4 +- 0.7)%
- D: dilution due to peaking background contamination or wrongly reconstructed B $\rightarrow X_{s\gamma}$ (cross feed)

 $B \rightarrow X_{s\gamma} (4/4)$

B Sample	$A_{ m peak}$	D	$A_{ m det}$	A_{CP}
All B	$+(0.33 \pm 1.87)\%$	$\pm 0.88\%$	$-(1.40 \pm 0.49 \pm 0.51)\%$	$+(1.73 \pm 1.93 \pm 1.02)\%$
Charged B	$+(3.14 \pm 2.86)\%$	$\pm 0.80\%$	$-(1.09 \pm 0.67 \pm 0.51)\%$	$+(4.23 \pm 2.93 \pm 0.95)\%$
Neutral B	$-(2.48 \pm 2.47)\%$	$\pm 0.97\%$	$-(1.74 \pm 0.72 \pm 0.51)\%$	$-(0.74 \pm 2.57 \pm 1.10)\%$
• CP asyn • A _{CP} =	nmetry for all B = + (1.7 ± 1.9 ±	mesons: 1.0)%	2× 5	$ \begin{array}{c} - & \min \chi^2 \\ - & 68\% \text{ C.I.} \\ - & 90\% \text{ C.I.} \end{array} $ $ \begin{array}{c} BaBar \\ Preliminary \\ - & 1$
• Isospin difference of A _{CP} :				
• ΔA_{Xs}	$_{\gamma}$ = + (5.0 ± 3.9	± 1.5)%	Minim ³	
• ΔA_{Xsv} provides limits on poorly known				
Wilson (Coefficient C ₈ :		1-	-
0.07	$\leq \operatorname{Im} \frac{C_{8g}}{C_{7\gamma}} \leq 4.48$	8, 68% C		2 3 4 5 6 7
	C_{2}			$\operatorname{Im}(C_{8g}/C_{7\gamma})$
-1.64	$\leq \operatorname{Im} \frac{C_{8g}}{C_{7\gamma}} \leq 6.52$	2, 90% C	A_{CP} and ΔA_X	$_{\gamma}$ in agreement with SM
M Rotondo		Elav	Benzke	et al. PRL106,141801

$B \rightarrow K \pi^{-} \pi^{+} \gamma$

• "Time-dependent analysis of $B^0 \rightarrow K_s \pi^- \pi^+ \gamma$ and studies of the $K^+ \pi^- \pi^+$ system in $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ decays"

Paper to be submitted to Phy.Rev.D

В→К_sππү (1/5)

- Radiative $b \rightarrow s \gamma$
 - described in the SM as interaction between left-handed quark and right-handed antiquarks
 - In SM: predominance of left-handed photons
 - NP particles: enhancement of the righthanded photons contribution
- Method to probe the photon polarization:
 - Measurement of CP asymmetry parameters in radiative $B^0 \rightarrow K_s \rho^0 \gamma$ decay

$$\mathcal{A}_{CP}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) - \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}{\Gamma(\overline{B}^{0}(\Delta t) \to f_{CP}\gamma) + \Gamma(B^{0}(\Delta t) \to f_{CP}\gamma)}$$
$$= \mathcal{S}_{f_{CP}} \sin(\Delta m_{d}\Delta t) - \mathcal{C}_{f_{CP}} \cos(\Delta m_{d}\Delta t)$$

In the SM
$$\mathcal{S}_{fCP} \propto rac{m_s}{m_b} pprox 0.02$$

B→K_sππγ (2/5)

- Extract the parameter S_{ksov} in $B^0 \rightarrow K_s \rho^0 \gamma$
- Experimentally: time dependent analysis of $B^0 \rightarrow K_s \pi \pi \gamma$
 - Rare decays: BF = $(9.8 \pm 1.1) \cdot 10^{-6}$
 - Dilution from irreducible BKG from non CP eigenstates

B⁰ decay vertices in the event

- $rac{\mathcal{S}_{K^0_S\pi^+\pi^-\gamma}}{\mathcal{S}_{\kappa^0}}$ The value of S_{Kspy} is diluted
- Dilution is extracted from the amplitudes of the intermediate resonances from $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ assuming the Isospin Symmetry

—

В→К_sππү (3/5)

<u>Three stages</u> of the $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$ analysis:

(2) Fit to $m_{K\pi\pi}$ spectrum to determine K_{res} <u>amplitudes</u> and BFs

(3) Fit to $m_{K\pi}$ spectrum to determine <u>amplitudes</u> of K^{*}(892), $\rho^0(770)$,...

dilution factor calculation

В→К_sππү (4/5)

M.Rotondo

 $\mathcal{B}(B^+ \to \text{Mode}) \times$ PDG values $\mathcal{B}(B^+ \to \text{Mode}) \times 10^{-6}$ Mode $\mathcal{B}(R \to hh) \times 10^{-6}$ $(\times 10^{-6})$ Inclusive $27.2 \pm 1.0^{+1.1}_{-1.3}$ 27.6 ± 2.2 . . . $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ $26.0^{+1.4}_{-1.3}\pm 1.8$ $K^{*0}(892)\pi^+\gamma$ $17.3 \pm 0.9^{+1.2}_{-1.1}$ 20^{+7}_{-6} Resonances in the $K\pi\pi$ system $9.1^{+0.8}_{-0.7}\pm1.3$ $9.2^{+0.8}_{-0.7}{\pm}1.3\pm0.02$ $K^{+}\rho(770)^{0}\gamma$ < 20 CL= 90% $(K\pi)_{0}^{*0}\pi^{+}\gamma$ $11.3 \pm 1.5^{+2.0}_{-2.6}$ Ø . . . $10.8^{+1.4+1.9}_{-1.5-2.5}$ $(K\pi)^0_0\pi^+\gamma$ (NR) < 9.2 CL= 90% . . . Several BF: $0.51 \pm 0.07 ^{+0.09}_{-0.12}$ measured: $0.82\pm0.11^{+0.15}_{-0.19}\pm0.08$ $K_0^*(1430)^0\pi^+\gamma$ Ø - many are the world $\mathcal{B}(B^+ \to \mathrm{Mode}) \times$ PDG values best Mode $\mathcal{B}(B^+ \to \text{Mode}) \times 10^{-6}$ $\mathcal{B}(K_{\rm res} \to K^+ \pi^+ \pi^-) \times 10^{-6}$ $(\times 10^{-6})$ some are measured Inclusive $27.2 \pm 1.0^{+1.1}_{-1.2}$ 27.6 ± 2.2 . . . $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ for the first time $44.0^{+6.0}_{-4.0}{}^{+3.5}_{-3.7}\pm4.6$ $14.5^{+2.0+1.1}_{-1.3-1.2}$ $K_1(1270)^+\gamma$ 43 ± 13 $9.7^{+4.6+3.1}_{-2.9-1.8} \pm 0.6$ $4.1^{+1.9+1.3}_{-1.2-0.8}$ $K_1(1400)^+\gamma$ < 15 CL = 90%BRs of various resonances $23.8^{+5.2}_{-4.6}{+5.9}_{\pm}\pm2.4$ $9.7^{+2.1+2.4}_{-1.9-0.7}$ $K^{*}(1410)^{+}\gamma$ Ø Decaing to $K\pi\pi$ system from m(Kpp) $1.5^{+1.2+0.9}_{-1.0-1.4}$ $10.4^{+8.7}_{-7.0}{}^{+6.3}_{-9.9}\pm0.5$ $K_{2}^{*}(1430)^{+}\gamma$ 14 ± 4 $17.0^{+1.7+3.5}_{-1.4-3.0}$ $71.7^{+7.2}_{-5.7}{}^{+15}_{-13}\pm 5.8$ $K^{*}(1680)^{+}\gamma$ < 1900 CL= 90%

В→К_sππү (5/5)

• Time-dependent analysis of $B^0 \rightarrow K_s \pi \pi \gamma$ decays

The current sensitivity does not allow to constrain NP models

Conclusions

- BaBar still produces exciting physics results using new analysis techniques to access new interesting observables
 - $B \rightarrow X_s \ell^+ \ell^-$ from a sum of exclusive final decays
 - $B \rightarrow X_{sY}$ search for CP viol. and first measurement of ΔA_{CP}
 - TD analysis of $B^0 \rightarrow K_s \pi \pi \gamma$ and study of $B^+ \rightarrow K \pi \pi \gamma$ decay
- No evidence of New Physics so far!
- Larger statistics are needed to tell wether or not there are indications of NP in these decays
- Search for indirect signal of NP is continuing with much high statistical samples @LHC (LHCb, CMS, ATLAS) and in near future at Belle-II

Backup slides

BaBar in a nutshell

- Operation: 05/1999-04/2008 (BaBar, PEP-II)
- e⁺e⁻ machines run at Y(4S) resonance:
 - Y(4S) decays only in B⁰B⁰ and B⁺B⁻ (very clean environment)
 - Cross section is relatively high: 1.06nb
 - Backgrounds from $e^+e^- \rightarrow q\underline{q}$ (~3 nb)

Kinematics of fully reconstructed B

Backrground discrimination

M.Rotondo

$B \rightarrow X_s \ell^+ \ell^-$ partial BF .vs. Mx

$B \rightarrow X_s \ell^+ \ell^- CP$ violation

$$A_{CP} = \frac{BF(B) - BF(\overline{B})}{BF(B) + BF(\overline{B})}$$

- Sample divided according to lepton kind and B flavor
 - Inferred from K/ π charges
- No model-dependent extrapolation of signal rates performed

$$A_{CP} = 0.04 \pm 0.11_{stat} \pm 0.01_{syst}$$

In agreement with SM predictions

Eur.Phys.JC8 619 Phys.Rev.D 54,882

S

Ñ

₹

A_{CP}

0.5

0

-0.5

U. Haisch, arXiv:0805.2141

M.Rotondo