

Polarization amplitudes and CP asymmetries in $B^0 \rightarrow \Phi K^*(892)^0$ at LHCb

Anh-Duc Nguyen on behalf of the LHCb collaboration

Ecole Polytechnique Fédérale de Lausanne anhduc.nguyen@epfl.ch

Rencontres du Vietnam - Flavour Physics Quy Nhon, July 27th - August 2rd 2014

-

Image: A match a ma

Motivation

Motivation

- The first evidence for the decay $B \rightarrow \phi K^*$ was provided by CLEO (*Phys.Rev.Lett.86*,3718 (2001)) and BABAR (*Phys.Rev.Lett.87*, 151801 (2001)) experiments
- In the SM, the decay $B_d^0 \rightarrow \phi K^* (892)^0$ proceeds mainly via the gluonic penguin diagram (b \rightarrow s transition)
- This b \rightarrow s transition is sensitive to contributions from physics beyond the SM.
- Previous measurements of $B_d^0 \rightarrow \phi K^*(892)^0$ show that $f_{longitudinal} \approx f_{transverse}$ which were not in agreement with theory (the longitudinal components dominates)
- The pseudoscalar to vector-vector decay $B^0_d \rightarrow \phi K^*(892)^0$ also allows to study the CP violation in polarization parameters
- In this talk I present the measurements of the polarization amplitudes, phases and CP asymmetries (LHCb-PAPER-2014-005, JHEP 1405 (2014) 069)

The LHCb detector

- LHCb is a single-arm forward spectrometer at the LHC
- Optimized for measurements in heavy-flavour physics
- Recording pp collisions with $\sqrt{s} = 7$ TeV (in 2011) and 8 TeV (in 2012)
- The experiment has a large forward acceptance of 2 $< \eta <$ 5

A.D. Nguyen (EPFL)

 $B^0 \rightarrow \Phi K^* (892)^0$

イロト イヨト イヨト イヨト

Analysis Strategy

- B^0 is a pseudoscalar-meson with spin 0; ϕ and $K^*(892)^0$ are vector-mesons with spin 1 decayed into K^+K^- and $K^+\pi^-$ (P-wave) respectively.
- Angular momentum conservation allows three possible helicity configurations with amplitudes denoted H_{+1} , H_{-1} and H_0 .
- In the transversity basis, we can write these in term of a longitudinal polarization, A_0 , and two transverse polarizations, A_\perp and A_\parallel

$$A_0 = H_0 \;, \qquad A_\perp = rac{H_{+1} - H_{-1}}{\sqrt{2}} \qquad ext{ and } \qquad A_\parallel = rac{H_{+1} + H_{-1}}{\sqrt{2}} \;.$$

- There are also contributions from S-wave K^+K^- and S-wave $K^+\pi^-$ with spin 0. (amplitudes A_S^{KK} and $A_S^{K\pi}$)
- The amplitudes have magnitudes and relative phases defined as:

$$A_{\parallel} = |A_{\parallel}| e^{i\delta_{\parallel}} \ , \ A_{\perp} = |A_{\perp}| e^{i\delta_{\perp}} \ , \ A_{S}^{K\pi} = |A_{S}^{K\pi}| e^{i\delta_{S}^{K\pi}} \ , \ A_{S}^{KK} = |A_{S}^{KK}| e^{i\delta_{S}^{KK}} \ , \delta_{0} = 0$$

• To determine these quantities, an analysis of the angular distribution and the invariant masses of the decay products is performed.

A.D. Nguyen (EPFL)

 $B^0 \rightarrow \Phi K^* (892)^0$

$K^+K^-K^+\pi^-$ mass model

- The selection of events is divided into two steps:
 - Apply a loose selection to retain majority of signal events and reduce a large fraction of background
 - Then, a geometric likelihood (GL) method is used to further reduce the background

- The signal invariant mass distribution is modelled as sum of a Crystal Ball and a Gaussian function.
- Included the contribution from $ar{B^0_s} o \phi K^{*0}$ which has the same shape with B^0
- The background here is mainly combinatorial and is modelled by an exponential.
- A yield of $1655 \pm 42 \ B^0$ signal candidates is found

A.D. Nguyen (EPFL)

 $B^0 \rightarrow \Phi K^* (892)^0$

July 28, 2014 6 / 22

Angular Analysis

- The angular analysis is performed in term of the three helicity angles (θ₁, θ₂, Φ)
- The flavour of the decaying the *B*⁰ meson is determined by the charge of the pion from the *K*^{*0} decay
- B^0 and \bar{B}^0 decays are analysed separately

• Taking into account both the P- and S-wave contributions and their interference, the differential decay rate is given by:

$$d^{5}\Gamma \propto |PWave \times M_{1}(m_{1})M_{1}(m_{2}) + SWave(K\pi) \times M_{0}(m_{1})M_{1}(m_{2}) + SWave(KK) \times M_{1}(m_{1})M_{0}(m_{2})|^{2}$$

$$\begin{split} d^{5}\Gamma &= \frac{9}{8\pi} \mid \left(\mathcal{A}_{0}\cos\theta_{1}\cos\theta_{2} + \frac{\mathcal{A}_{\parallel}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\cos\varphi + \frac{\mathcal{A}_{\perp}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\sin\varphi\right)M_{1}(m_{1})M_{1}(m_{2}) \\ &+ \frac{\mathcal{A}_{5}}{\sqrt{3}}\cos\theta_{1}M_{0}(m_{1})M_{1}(m_{2}) + \frac{\mathcal{A}_{5}'}{\sqrt{3}}\cos\theta_{2}M_{1}(m_{1})M_{0}(m_{2})\mid^{2}d\phi(K,K,K,\pi) \end{split}$$

which can be re-written as:

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Angular Analysis

- The angular analysis is performed in term of the three helicity angles (θ₁, θ₂, Φ)
- The flavour of the decaying the *B*⁰ meson is determined by the charge of the pion from the *K*^{*0} decay
- B^0 and \bar{B}^0 decays are analysed separately

• Taking into account both the P- and S-wave contributions and their interference, the differential decay rate is given by:

$$d^{5}\Gamma \propto |PWave \times M_{1}(m_{1})M_{1}(m_{2}) + SWave(K\pi) \times M_{0}(m_{1})M_{1}(m_{2}) + SWave(KK) \times M_{1}(m_{1})M_{0}(m_{2})|^{2}$$

$$\begin{split} d^{5}\Gamma &= \frac{9}{8\pi} \mid \left(\mathcal{A}_{0}\cos\theta_{1}\cos\theta_{2} + \frac{\mathcal{A}_{\parallel}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\cos\varphi + \frac{\mathcal{A}_{\perp}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\sin\varphi\right)M_{1}(m_{1})M_{1}(m_{2}) \\ &+ \frac{\mathcal{A}_{5}}{\sqrt{3}}\cos\theta_{1}M_{0}(m_{1})M_{1}(m_{2}) + \frac{\mathcal{A}_{5}'}{\sqrt{3}}\cos\theta_{2}M_{1}(m_{1})M_{0}(m_{2})\mid^{2}d\phi(K,K,K,\pi) \end{split}$$

which can be re-written as:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Angular Analysis

- The angular analysis is performed in term of the three helicity angles (θ₁, θ₂, Φ)
- The flavour of the decaying the *B*⁰ meson is determined by the charge of the pion from the *K*^{*0} decay
- B^0 and \bar{B}^0 decays are analysed separately

• Taking into account both the P- and S-wave contributions and their interference, the differential decay rate is given by:

$$d^{5}\Gamma \propto \left| \textit{PWave} \times \textit{M}_{1}(\textit{m}_{1})\textit{M}_{1}(\textit{m}_{2}) + \textit{SWave}(\textit{K}\pi) \times \textit{M}_{0}(\textit{m}_{1})\textit{M}_{1}(\textit{m}_{2}) + \textit{SWave}(\textit{KK}) \times \textit{M}_{1}(\textit{m}_{1})\textit{M}_{0}(\textit{m}_{2}) \right|^{2}$$

$$\begin{split} d^{5}\Gamma &= \frac{9}{8\pi} \mid \left(\mathcal{A}_{0}\cos\theta_{1}\cos\theta_{2} + \frac{\mathcal{A}_{\parallel}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\cos\varphi + \frac{\mathcal{A}_{\perp}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\sin\varphi\right)M_{1}(m_{1})M_{1}(m_{2}) \\ &+ \frac{\mathcal{A}_{5}}{\sqrt{3}}\cos\theta_{1}M_{0}(m_{1})M_{1}(m_{2}) + \frac{\mathcal{A}_{5}'}{\sqrt{3}}\cos\theta_{2}M_{1}(m_{1})M_{0}(m_{2})\mid^{2}d\phi(K,K,K,\pi) \end{split}$$

which can be re-written as:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Angular Analysis

- The angular analysis is performed in term of the three helicity angles (θ₁, θ₂, Φ)
- The flavour of the decaying the *B*⁰ meson is determined by the charge of the pion from the *K*^{*0} decay
- B^0 and \bar{B}^0 decays are analysed separately

• Taking into account both the P- and S-wave contributions and their interference, the differential decay rate is given by:

$$d^{5}\Gamma \propto \left| \textit{PWave} \times \textit{M}_{1}(\textit{m}_{1})\textit{M}_{1}(\textit{m}_{2}) + \textit{SWave}(\textit{K}\pi) \times \textit{M}_{0}(\textit{m}_{1})\textit{M}_{1}(\textit{m}_{2}) + \textit{SWave}(\textit{KK}) \times \textit{M}_{1}(\textit{m}_{1})\textit{M}_{0}(\textit{m}_{2}) \right|^{2}$$

$$\begin{split} d^{5}\Gamma &= \frac{9}{8\pi} \mid (\mathcal{A}_{0}\cos\theta_{1}\cos\theta_{2} + \frac{\mathcal{A}_{\parallel}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\cos\varphi + \frac{\mathcal{A}_{\perp}}{\sqrt{2}}\sin\theta_{1}\sin\theta_{2}\sin\varphi)M_{1}(m_{1})M_{1}(m_{2}) \\ &+ \frac{\mathcal{A}_{5}}{\sqrt{3}}\cos\theta_{1}M_{0}(m_{1})M_{1}(m_{2}) + \frac{\mathcal{A}_{5}'}{\sqrt{3}}\cos\theta_{2}M_{1}(m_{1})M_{0}(m_{2})\mid^{2}d\phi(K,K,\pi) \end{split}$$

which can be re-written as:

July 28, 2014 7 / 22

Angular Analysis

$$d^5\Gamma = rac{9}{8\pi}\sum_{i=1}^{15}h_i \ f_i(heta_1, heta_2,\Phi)\mathcal{M}_i(m_{K\pi},m_{KK})d\Omega(KKK\pi) \ .$$

i	hi	$f_i(\theta_1, \theta_2, \Phi)$	$\mathcal{M}_i(m_{K\pi}, m_{KK})$
1	$ A_0 ^2$	$\cos \theta_1^2 \cos \theta_2^2$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) ^2$
2	$ A_{ } ^2$	$\frac{1}{4}\sin\theta_1^2\sin\theta_2^2(1+\cos(2\Phi))$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) ^2$
3	$ A_{\perp} ^{2}$	$\frac{1}{4} \sin \theta_1^2 \sin \theta_2^2 (1 - \cos(2\Phi))$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) ^2$
4	$ A_{\perp} A_{\parallel}^{*} e^{i(\delta_{\perp}-\delta_{\parallel})}$	$-\frac{1}{2}\sin heta_1^2\sin heta_2^2\sin(2\Phi)$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) ^2$
5	$ A_{\parallel} A_{0}^{*} e^{i\delta_{\parallel}}$	$\sqrt{2}\cos\theta_1\sin\theta_1\cos\theta_2\sin\theta_2\cos\Phi$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) ^2$
6	$ A_{\perp} A_0^* e^{i\delta_{\perp}}$	$-\sqrt{2}\cos\theta_1\sin\theta_1\cos\theta_2\sin\theta_2\sin\Phi$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) ^2$
7	$ A_{\mathrm{S}}^{K\pi} ^2$	$\frac{1}{3}\cos\theta_2^2$	$ M_0^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) ^2$
8	$ A_{\parallel} A_{\mathrm{S}}^{*K\pi} e^{i(\delta_{\parallel}-\delta_{\mathrm{S}}^{K\pi})}$	$\frac{\sqrt{6}}{3}\sin\theta_1\cos\theta_2\sin\theta_2\cos\Phi$	$ M_1^{KK}(m_{KK}) ^2 M_1^{K\pi}(m_{K\pi}) M_0^{*K\pi}(m_{K\pi})$
9	$ A_{\perp} A_{\mathrm{S}}^{*K\pi} e^{i(\delta_{\perp}-\delta_{\mathrm{S}}^{K\pi})}$	$-rac{\sqrt{6}}{3}\sin heta_1\cos heta_2\sin heta_2\sin\Phi$	$ M_1^{KK}(m_{KK}) ^2 M_1^{K\pi}(m_{K\pi}) M_0^{*K\pi}(m_{K\pi})$
10	$ A_0 A_{\rm S}^{*K\pi} e^{-i\delta_{\rm S}^{K\pi}}$	$\frac{2}{\sqrt{3}}\cos\theta_1\cos\theta_2^2$	$ M_1^{KK}(m_{KK}) ^2 M_1^{K\pi}(m_{K\pi}) M_0^{*K\pi}(m_{K\pi})$
11	$ A_{\rm S}^{KK} ^2$	$\frac{1}{3}\cos\theta_1^2$	$ M_0^{KK}(m_{KK}) ^2 M_1^{K\pi}(m_{K\pi}) ^2$
12	$ A_{\parallel} A_{\mathrm{S}}^{*KK} e^{i(\delta_{\parallel}-\delta_{\mathrm{S}}^{KK})}$	$\frac{\sqrt{6}}{3}\sin\theta_1\cos\theta_1\sin\theta_2\cos\Phi$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) M_0^{*KK}(m_{KK})$
13	$ A_{\perp} A_{\mathrm{S}}^{*KK} e^{i(\delta_{\perp}-\delta_{\mathrm{S}}^{KK})}$	$-\frac{\sqrt{6}}{3}\sin\theta_1\cos\theta_1\sin\theta_2\sin\Phi$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) M_0^{*KK}(m_{KK})$
14	$ A_0 A_{ m S}^{*KK} e^{-i\delta_{ m S}^{KK}}$	$\frac{2}{\sqrt{3}}\cos\theta_1^2\cos\theta_2$	$ M_1^{K\pi}(m_{K\pi}) ^2 M_1^{KK}(m_{KK}) M_0^{*KK}(m_{KK})$
15	$ A_{\mathrm{S}}^{K\pi} A_{\mathrm{S}}^{*KK} e^{i(\delta_{\mathrm{S}}^{K\pi}-\delta_{\mathrm{S}}^{KK})}$	$\frac{2}{3}\cos\theta_1\cos\theta_2$	$M_1^{KK}(m_{KK})M_0^{K\pi}(m_{K\pi})M_0^{*KK}(m_{KK})M_1^{*K\pi}(m_{K\pi})$

 $B^0 \rightarrow \Phi K^* (892)^0$

<ロ> (日) (日) (日) (日) (日)

Modelling the resonances P-wave

The resonances (*K*π, *KK*) can be modelled by a relativistic Breit-Wigner spin-1.

$$M_1(m) = rac{m_0 \Gamma_1(m)}{(m_0^2 - m^2) - im_0 \Gamma_1(m)}$$

- The mass-dependent width is given by $\Gamma_1(m) = \Gamma_0 \frac{m_0}{m} \frac{1+r^2 q_0^2}{1+r^2 q^2} \left(\frac{q}{q_0}\right)^3$
- The value of resonance mass (m_0) and the natural width (Γ_0) are taken from PDG.
- r is the interaction radius (r = 3.4 ħc/GeV is taken from Nucl. Phys. B296 (1988) 493)
- q is the momentum of the decay products in the rest frame of the mother particle

 $B^0 \rightarrow \Phi K^* (892)^0$

Modelling the $K\pi$ S-wave

• The LASS collaboration (*Nucl.Phys. B296, 493. 1988*) has studied $K^-\pi^+$ scattering in the reaction $K^-p \rightarrow K^-\pi^+n$. They found that the S-wave can be parameterized as:

$$M_0(m) = \sin \delta_0 e^{i\delta_0}$$

 $\delta_0 = \Delta R + \Delta B$

 ΔR represents the resonance K*(1430)⁰ contribution (relativistic BW spin-0)

$$\cot \Delta R = \frac{m_0^2 - m^2}{m_0 \Gamma_0(m)}$$
$$\Gamma_0(m) = \Gamma_0 \frac{m_0}{m} (\frac{q}{q_0})$$

• ΔB represents a non-resonance contribution given by an effective range parameterization

$$\cot \Delta B = rac{1}{aq} + rac{1}{2}bq$$

a is the scattering length; b is the effective range

• The values for the parameterization are taken from the BaBar's paper: Phys. Rev. D78 (2008) 092008

 $B^0 \rightarrow \Phi K^* (892)^0$

Modelling the KK S-wave

• S-wave in the K^+K^- system is described by the Flatté parameterization of the $f_0(980)$ resonance

$$M_0^{KK}(m_{KK}) = \frac{1}{m_{f_0}^2 - m_{KK}^2 - im_{f_0}(g_{\pi\pi}\rho_{\pi\pi} + g_{KK}\rho_{KK})},$$

- *m*_{f0} is the resonance mass
- $g_{KK,\pi\pi}$ are partial decay widths
- and the $\rho_{KK,\pi\pi}$ are phase-space factors.

$$\rho_{KK} = \begin{cases} (1 - 4m_K^2/m^2)^{1/2} & \text{above } KK \text{ threshold} \\ i(4m_K^2/m^2 - 1)^{1/2} & \text{below } KK \text{ threshold} \end{cases}$$

• The values $m_{f_0} = 939 \,\mathrm{MeV}/c^2$, $g_{\pi\pi} = 199 \,\mathrm{MeV}/c^2$ and $g_{KK}/g_{\pi\pi} = 3.0$ are taken from LHCb paper (Phys. Rev. D87 (2013) 052001)

 $B^0 \rightarrow \Phi K^* (892)^0$

July 28, 2014 11 / 22

Angular Acceptance

• Due to detector geometry and kinematic cuts, the acceptance of the detector is not uniform as a function of the decay angles and invariant mass

- TOS (Trigger On Signal)
- TIS (Trigger Independent of Signal)
- 17% overlap between TOS and TIS are treated as TOS. The remaining TIS are labelled "Not TOS"

< A

 $B^0 \rightarrow \Phi K^* (892)^0$

July 28, 2014 12 / 22

Angular Acceptance weights

- Instead of parameterizing the acceptance, we use the normalization weights proposed by T. du Pree (CERN-THESIS-2010-124)
- An unbinned log likelihood fit is used to determine the polarization amplitudes and phases:

$$\frac{d}{d_{\lambda_k}} \ln \mathcal{L}(\vec{\lambda}) = \frac{d}{d_{\lambda_k}} \sum_e \ln \frac{\sum_{i=1}^{15} K_i(t_e | \vec{\lambda}) f_i(\vec{\Omega_e})}{\int \sum_{j=1}^{15} K_j(t | \vec{\lambda}) \xi_j(t) dt}$$

where the index e denotes the event, $f_i(\vec{\Omega_e})$ is the angular function and the physics parameters dependent amplitude terms is $K_i(t_e|\vec{\lambda})$ ($\vec{\lambda}$: the set of parameters).

• The normalization weights ξ_i is obtained from the simulated data:

$$\xi_j = \frac{1}{N_{gen}} \sum_{e}^{accepted} \frac{f_j(\vec{\Omega}_e)}{S(\vec{\Omega_e}|\vec{\lambda})} \text{ , } \text{ S is the signal PDF.}$$

• This method is independent of the shape of the acceptance, and the acceptance does not need to be parameterized.

 $B^0 \rightarrow \Phi K^* (892)^0$

・ロン ・四 ・ ・ ヨン ・ ヨン

• Data are separated in four categories, depending on the flavour of the B meson and the trigger category TOS and TIS.

• A simultaneous fit is performed to the four subsets

A.D. Nguyen (EPFL)

 $B^0 \rightarrow \Phi K^* (892)^0$

July 28, 2014 14 / 22

• Parameters measured in the angular analysis. The first and second uncertainties are statistical and systematic, respectively.

Parameter	Definition	Fitted value	
$f_{ m L}$	$0.5(A_0 ^2/F_{ m P}+ \overline{A}_0 ^2/\overline{F}_{ m P})$	$0.497 \pm 0.019 \pm 0.015$	
f_{\perp}	$0.5(A_{\perp} ^2/F_{ m P}+ \overline{A}_{\perp} ^2/\overline{F}_{ m P})$	$0.221 \pm 0.016 \pm 0.013$	
$f_{ m S}(K\pi)$	$0.5(\mathcal{A}_{ ext{S}}^{K\pi} ^2+ \overline{\mathcal{A}}_{ ext{S}}^{K\pi} ^2)$	$0.143 \pm 0.013 \pm 0.012$	
$f_{ m S}(KK)$	$0.5(\mathcal{A}_{\mathrm{S}}^{\mathit{KK}} ^2+ \overline{\mathcal{A}}_{\mathrm{S}}^{\mathit{KK}} ^2)$	$0.122 \pm 0.013 \pm 0.008$	
δ_{\perp}	$0.5({ m arg}A_{\perp}+{ m arg}\overline{A}_{\perp})$	$2.633 \pm 0.062 \pm 0.037$	
δ_{\parallel}	$0.5({ m arg} A_{\parallel} + { m arg} \overline{A}_{\parallel})$	$2.562 \pm 0.069 \pm 0.040$	
$\delta_{ m S}(K\pi)$	$0.5({ m arg} A_{ m S}^{K\pi}+{ m arg} \overline{A}_{ m S}^{K\pi})$	$2.222 \pm 0.063 \pm 0.081$	
$\delta_{ m S}(\textit{KK})$	$0.5({ m arg} A_{ m S}^{KK}+{ m arg} \overline{A}_{ m S}^{KK})$	$2.481 \pm 0.072 \pm 0.048$	

(日) (同) (三) (三)

• Parameters measured in the angular analysis. The first and second uncertainties are statistical and systematic, respectively.

Parameter	Definition	Fitted value	
$f_{ m L}$	$0.5(A_0 ^2/F_{ m P}+ \overline{A}_0 ^2/\overline{F}_{ m P})$	$0.497 \pm 0.019 \pm 0.015$	
f_{\perp}	$0.5(A_{\perp} ^2/F_{ m P}+ \overline{A}_{\perp} ^2/\overline{F}_{ m P})$	$0.221 \pm 0.016 \pm 0.013$	
$f_{ m S}(K\pi)$	$0.5(\mathcal{A}_{\mathrm{S}}^{K\pi} ^2+ \overline{\mathcal{A}}_{\mathrm{S}}^{K\pi} ^2)$	$0.143 \pm 0.013 \pm 0.012$	
$f_{\rm S}(KK)$	$0.5(\mathcal{A}_{\mathrm{S}}^{KK} ^2+ \overline{\mathcal{A}}_{\mathrm{S}}^{KK} ^2)$	$0.122\pm 0.013\pm 0.008$	
δ_{\perp}	$0.5(rg A_{\perp} + rg \overline{A}_{\perp})$	$2.633 \pm 0.062 \pm 0.037$	
δ_{\parallel}	$0.5(rg A_{\parallel}+rg \overline{A}_{\parallel})$	$2.562 \pm 0.069 \pm 0.040$	
$\delta_{ m S}(K\pi)$	$0.5({ m arg}A_{ m S}^{K\pi}+{ m arg}\overline{A}_{ m S}^{K\pi})$	$2.222 \pm 0.063 \pm 0.081$	
$\delta_{ m S}(\textit{KK})$	$0.5({ m arg} A_{ m S}^{KK} + { m arg} \overline{A}_{ m S}^{KK})$	$2.481 \pm 0.072 \pm 0.048$	

• The value of f_L is close to 0.5, indicating that the longitudinal and transverse polarizations have similar size

 $B^0 \rightarrow \Phi K^* (892)^0$

イロト イポト イヨト イヨト

• Parameters measured in the angular analysis. The first and second uncertainties are statistical and systematic, respectively.

Parameter	Definition	Fitted value	
$f_{ m L}$	$0.5(A_0 ^2/F_{ m P}+ \overline{A}_0 ^2/\overline{F}_{ m P})$	$0.497 \pm 0.019 \pm 0.015$	
f_{\perp}	$0.5(A_{\perp} ^2/F_{ m P}+ \overline{A}_{\perp} ^2/\overline{F}_{ m P})$	$0.221 \pm 0.016 \pm 0.013$	
$f_{ m S}(K\pi)$	$0.5(\mathcal{A}_{ ext{S}}^{K\pi} ^2+ \overline{\mathcal{A}}_{ ext{S}}^{K\pi} ^2)$	$0.143 \pm 0.013 \pm 0.012$	
$f_{ m S}(KK)$	$0.5(\mathcal{A}_{ m S}^{KK} ^2+ \overline{\mathcal{A}}_{ m S}^{KK} ^2)$	$0.122 \pm 0.013 \pm 0.008$	
δ_{\perp}	$0.5({ m arg}A_{\perp}+{ m arg}\overline{A}_{\perp})$	$2.633 \pm 0.062 \pm 0.037$	
δ_{\parallel}	$0.5({ m arg}A_{\parallel}+{ m arg}\overline{A}_{\parallel})$	$2.562 \pm 0.069 \pm 0.040$	
$\delta_{ m S}(K\pi)$	$0.5({ m arg} A_{ m S}^{K\pi}+{ m arg} \overline{A}_{ m S}^{K\pi})$	$2.222\pm 0.063\pm 0.081$	
$\delta_{ m S}({\it KK})$	$0.5({ m arg} {\it A}_{ m S}^{KK}+{ m arg} \overline{\it A}_{ m S}^{KK})$	$2.481 \pm 0.072 \pm 0.048$	

- The value of f_L is close to 0.5, indicating that the longitudinal and transverse polarizations have similar size
- Significant S-wave contributions are found in both the K^+K^- and $K^+\pi^-$ systems

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Parameter	Definition	Fitted value
$f_{ m L}$	$0.5(A_0 ^2/F_{ m P}+ \overline{A}_0 ^2/\overline{F}_{ m P})$	$0.497 \pm 0.019 \pm 0.015$
f_{\perp}	$0.5(A_{\perp} ^2/F_{ m P}+ \overline{A}_{\perp} ^2/\overline{F}_{ m P})$	$0.221 \pm 0.016 \pm 0.013$
$f_{ m S}(K\pi)$	$0.5(A_{ m S}^{K\pi} ^2+ \overline{A}_{ m S}^{K\pi} ^2)$	$0.143 \pm 0.013 \pm 0.012$
$f_{\rm S}(KK)$	$0.5(A_{ m S}^{KK} ^2+ \overline{A}_{ m S}^{KK} ^2)$	$0.122\pm 0.013\pm 0.008$
δ_{\perp}	$0.5(rg A_{\perp} + rg \overline{A}_{\perp})$	$2.633 \pm 0.062 \pm 0.037$
δ_{\parallel}	$0.5({ m arg} A_{\parallel} + { m arg} \overline{A}_{\parallel})$	$2.562 \pm 0.069 \pm 0.040$
$\delta_{ m S}(K\pi)$	$0.5({ m arg}{\cal A}_{ m S}^{K\pi}+{ m arg}\overline{\cal A}_{ m S}^{K\pi})$	$2.222\pm 0.063\pm 0.081$
$\delta_{ m S}(\textit{KK})$	$0.5({ m arg}A_{ m S}^{{ m {\it K}}{ m {\it K}}}+{ m arg}\overline{{ m A}}_{ m S}^{{ m {\it K}}{ m {\it K}}})$	$2.481 \pm 0.072 \pm 0.048$
\mathcal{A}_0^{CP}	$(A_0 ^2/F_{\mathrm{P}}- \overline{A}_0 ^2/\overline{F}_{\mathrm{P}})/(A_0 ^2/F_{\mathrm{P}}+ \overline{A}_0 ^2/\overline{F}_{\mathrm{P}})$	$-\ 0.003 \pm 0.038 \pm 0.005$
${\cal A}_{\perp}^{C\!P}$	$(A_{\perp} ^2/F_{\mathrm{P}} - \overline{A}_{\perp} ^2/\overline{F}_{\mathrm{P}})/(A_{\perp} ^2/F_{\mathrm{P}} + \overline{A}_{\perp} ^2/\overline{F}_{\mathrm{P}})$	$+ \ 0.047 \pm 0.074 \pm 0.009$
$\delta_{\perp}^{C\!P}$	0.5(arg $A_{\perp}-$ arg $\overline{A}_{\perp})$	$+ \ 0.062 \pm 0.062 \pm 0.005$
δ_{\parallel}^{CP}	$0.5({ m arg}{m A}_{\parallel}-{ m arg}{m \overline{A}}_{\parallel})$	$+0.045\pm0.069\pm0.015$
$\mathcal{A}_{\mathcal{S}}({\it K}\pi)^{C\!P}$	$(A_{\mathrm{S}}^{K\pi} ^2 - \overline{A}_{\mathrm{S}}^{K\pi} ^2)/(A_{\mathrm{S}}^{K\pi} ^2 + \overline{A}_{\mathrm{S}}^{K\pi} ^2)$	$+0.073\pm0.091\pm0.035$
$\mathcal{A}_{S}(KK)^{CP}$	$(A_{\mathrm{S}}^{KK} ^2 - \overline{A}_{\mathrm{S}}^{KK} ^2)/(A_{\mathrm{S}}^{KK} ^2 + \overline{A}_{\mathrm{S}}^{KK} ^2)$	$-0.209\pm0.105\pm0.012$
$\delta_{S}(K\pi)^{CP}$	$0.5({ m arg}A_{ m S}^{K\pi}-{ m arg}\overline{A}_{ m S}^{K\pi})$	$+0.062\pm0.062\pm0.022$
$\delta_{S}(KK)^{CP}$	$0.5({ m arg}{\cal A}_{ m S}^{KK}-{ m arg}\overline{\cal A}_{ m S}^{KK})$	$+0.022\pm0.072\pm0.004$

・ロト・日本・日本・日本・日本・今日・

A.D. Nguyen (EPFL)

 $B^0 \rightarrow \Phi K^* (892)^0$

July 28, 2014 16 / 22

Parameter	Definition	Fitted value
$f_{ m L}$	$0.5(A_0 ^2/F_{ m P}+ \overline{A}_0 ^2/\overline{F}_{ m P})$	$0.497 \pm 0.019 \pm 0.015$
f_{\perp}	$0.5(A_{\perp} ^2/F_{ m P}+ \overline{A}_{\perp} ^2/\overline{F}_{ m P})$	$0.221 \pm 0.016 \pm 0.013$
$f_{ m S}(K\pi)$	$0.5(A_{ m S}^{K\pi} ^2+ \overline{A}_{ m S}^{K\pi} ^2)$	$0.143 \pm 0.013 \pm 0.012$
$f_{\rm S}(KK)$	$0.5(A_{ m S}^{KK} ^2+ \overline{A}_{ m S}^{KK} ^2)$	$0.122\pm 0.013\pm 0.008$
δ_{\perp}	$0.5(rg A_{\perp} + rg \overline{A}_{\perp})$	$2.633 \pm 0.062 \pm 0.037$
δ_{\parallel}	$0.5({ m arg} A_{\parallel} + { m arg} \overline{A}_{\parallel})$	$2.562 \pm 0.069 \pm 0.040$
$\delta_{ m S}(K\pi)$	$0.5({ m arg}{\cal A}_{ m S}^{K\pi}+{ m arg}\overline{\cal A}_{ m S}^{K\pi})$	$2.222\pm 0.063\pm 0.081$
$\delta_{ m S}(KK)$	$0.5({ m arg} A_{ m S}^{KK} + { m arg} \overline{A}_{ m S}^{KK})$	$2.481 \pm 0.072 \pm 0.048$
\mathcal{A}_0^{CP}	$(A_0 ^2/F_{\mathrm{P}}- \overline{A}_0 ^2/\overline{F}_{\mathrm{P}})/(A_0 ^2/F_{\mathrm{P}}+ \overline{A}_0 ^2/\overline{F}_{\mathrm{P}})$	$-\ 0.003 \pm 0.038 \pm 0.005$
\mathcal{A}_{\perp}^{CP}	$(A_{\perp} ^2/F_{\mathrm{P}} - \overline{A}_{\perp} ^2/\overline{F}_{\mathrm{P}})/(A_{\perp} ^2/F_{\mathrm{P}} + \overline{A}_{\perp} ^2/\overline{F}_{\mathrm{P}})$	$+0.047\pm0.074\pm0.009$
$\delta^{\overline{CP}}_{\perp}$	0.5(arg $A_{\perp}-$ arg $\overline{A}_{\perp})$	$+ \ 0.062 \pm 0.062 \pm 0.005$
$\delta_{\parallel}^{\overline{CP}}$	$0.5({ m arg} A_{\parallel} - { m arg} \overline{A}_{\parallel})$	$+ \ 0.045 \pm 0.069 \pm 0.015$
$\mathcal{A}_{S}(K\pi)^{CP}$	$(\mathcal{A}^{K\pi}_{\mathrm{S}} ^2 - \overline{\mathcal{A}}^{K\pi}_{\mathrm{S}} ^2)/(\mathcal{A}^{K\pi}_{\mathrm{S}} ^2 + \overline{\mathcal{A}}^{K\pi}_{\mathrm{S}} ^2)$	$+0.073\pm0.091\pm0.035$
$\mathcal{A}_{S}(KK)^{CP}$	$(A_{\mathrm{S}}^{KK} ^2 - \overline{A}_{\mathrm{S}}^{KK} ^2)/(A_{\mathrm{S}}^{KK} ^2 + \overline{A}_{\mathrm{S}}^{KK} ^2)$	$-0.209\pm0.105\pm0.012$
$\delta_{S}(K\pi)^{CP}$	$0.5({ m arg}A_{ m S}^{K\pi}-{ m arg}\overline{A}_{ m S}^{K\pi})$	$+0.062\pm0.062\pm0.022$
$\delta_{S}(KK)^{CP}$	$0.5({ m arg} A_{ m S}^{KK} - { m arg} \overline{A}_{ m S}^{KK})$	$+0.022\pm0.072\pm0.004$

● The *CP* asymmetries in both amplitudes and phases are consistent with zero = → = → へ へ

A.D. Nguyen (EPFL)

 $B^0 \rightarrow \Phi K^* (892)^0$

July 28, 2014 16 / 22

Comparison of measurements made by the LHCb, BaBar (Phys. Rev. D78 (2008) 092008) and Belle (Phys. Rev. D88 (2013) 072004) collaborations.

Parameter	LHCb	BaBar	Belle
f _L	$0.497 \pm 0.019 \pm 0.015$	$0.494 \pm 0.034 \pm 0.013$	$0.499 \pm 0.030 \pm 0.018$
f_{\perp}	$0.221 \pm 0.016 \pm 0.013$	$0.212\pm 0.032\pm 0.013$	$0.238 \pm 0.026 \pm 0.008$
δ_{\perp}	$2.633 \pm 0.062 \pm 0.037$	$2.35\ \pm 0.13\ \pm 0.09$	$2.37\ \pm 0.10\ \pm 0.04$
δ_{\parallel}	$2.562 \pm 0.069 \pm 0.040$	$2.40 \ \pm 0.13 \ \pm 0.08$	$2.23\ \pm 0.10\ \pm 0.02$
A_0^{CP}	$-0.003\pm0.038\pm0.005$	$+0.01 \ \pm 0.07 \ \pm 0.02$	$-0.030\pm0.061\pm0.007$
AČP	$+0.047\pm0.072\pm0.009$	$-0.04\ \pm 0.15\ \pm 0.06$	$-0.14\ \pm 0.11\ \pm 0.01$
δ^{CP}_{\perp}	$+0.062\pm0.062\pm0.006$	$+0.21 \ \pm 0.13 \ \pm 0.08$	$+0.05\ \pm 0.10\ \pm 0.02$
$\delta_{\parallel}^{\overline{CP}}$	$+0.045\pm0.068\pm0.015$	$+0.22\ \pm 0.12\ \pm 0.08$	$-0.02\ \pm 0.10\ \pm 0.01$

 The results for the P-wave parameters are consistent with and more precise than BaBar and Belle measurements

E Sac

(日) (周) (三) (三)

Systematic uncertanties

- Various sources of systematic uncertainty are studied
 - Uncertainty on acceptance correction
 - Difference in kinematic variables between Data and MC
 - The $K^+K^-K^+\pi^-$ mass model used to determine the signal weights for the angular analysis.
 - The models of the S-wave in the K^+K^- and $K^+\pi^-$ system.

Measurement	Acceptance	Data/MC	Mass model	S-wave	Total
fL	0.014	0.005	0.002	0.001	0.015
f_{\perp}	0.013	0.002	0.001	0.001	0.013
$f_{\rm S}(K\pi)$	0.012	-	0.001	0.002	0.012
$f_{\rm S}(KK)$	0.007	-	0.002	0.003	0.008
δ_{\perp}	0.023	0.010	0.006	0.026	0.037
δ_{\parallel}	0.029	0.013	0.004	0.024	0.040
$\delta_{\rm S}^{"}(K\pi)$	0.045	0.026	0.004	0.062	0.081
$\delta_{\rm S}(KK)$	0.045	0.005	0.004	0.016	0.048
A_{0}^{CP}	-	0.002	0.002	0.004	0.005
A^{CP}_{\perp}	-	0.001	0.006	0.007	0.009
$A_{\rm S}^{-}(K\pi)^{CP}$	-	0.007	0.005	0.034	0.035
$A_{S}(KK)^{CP}$	-	0.007	0.009	0.003	0.012
δ_{\perp}^{CP}	-	0.003	0.001	0.004	0.005
δ_{\parallel}^{CP}	-	0.005	0.002	0.014	0.015
$\delta_{\rm S}^{''}(K\pi)^{CP}$	-	0.005	0.003	0.021	0.022
$\delta_{\rm S}(KK)^{CP}$	-	0.002	0.002	0.003	0.004

(日) (周) (三) (三)

Conclusion

- The results for the P-wave parameters for the decay mode $B^0\to\phi K^{*0}$ are consistent with, but more precise than previous measurements
- The CP asymmetries are consistent with no direct CP violation.
- The difference in direct *CP* asymmetries between the $B^0 \rightarrow \phi K^{*0}$ and $B^0 \rightarrow J/\psi K^{*0}$ where *CP* violation is predicted to be very small ($\sim 10^{-3}$) is also measured,

$$\Delta A_{CP} = (+1.5 \pm 3.2 \pm 0.5) \,\% \;,$$

This is a factor of two more precise than previous values reported by BaBar and Belle and is found to be consistent with zero

Conclusion

• This analysis was done with 2011 data (1.0 fb⁻¹ at $\sqrt{s} = 7$ TeV) New results and measurements with full 2011 and 2012 data (2.0 fb⁻¹ at $\sqrt{s} = 8$ TeV) will come soon

Parameter	Fitted value	Lausanne (not yet approved)	
	2011 data	2012 data	
fL	$0.497 \pm 0.019 \pm 0.015$	0.498 ± 0.011	
f_{\perp}	$0.221 \pm 0.016 \pm 0.013$	0.214 ± 0.009	
$f_{ m S}(K\pi)$	$0.143 \pm 0.013 \pm 0.012$	0.129 ± 0.007	
$f_{\rm S}(KK)$	$0.122\pm 0.013\pm 0.008$	0.090 ± 0.007	
δ_{\perp}	$2.633 \pm 0.062 \pm 0.037$	2.557 ± 0.036	
δ_{\parallel}	$2.562 \pm 0.069 \pm 0.040$	2.456 ± 0.036	
$\delta_{ m S}(\ddot{K}\pi)$	$2.222 \pm 0.063 \pm 0.081$	2.971 ± 0.037	
$\delta_{ m S}(KK)$	$2.481 \pm 0.072 \pm 0.048$	2.131 ± 0.045	
\mathcal{A}_{0}^{CP}	$-0.003\pm0.038\pm0.005$	-0.034 ± 0.022	
$\mathcal{A}^{C\!P}_{\perp}$	$+0.047\pm0.074\pm0.009$	-0.053 ± 0.042	
$\mathcal{A}_{\mathcal{S}}(K\pi)^{CP}$	$+0.073\pm0.091\pm0.035$	$+0.124 \pm 0.052$	
$\mathcal{A}_{S}(KK)^{CP}$	$-0.209\pm0.105\pm0.012$	$+0.005 \pm 0.074$	
δ^{CP}_{\perp}	$+0.062\pm0.062\pm0.005$	$+0.045 \pm 0.036$	
δ_{\parallel}^{CP}	$+0.045\pm0.069\pm0.015$	$+0.017 \pm 0.036$	
$\delta_{S}(K\pi)^{CP}$	$+0.062\pm0.062\pm0.022$	$+0.056 \pm 0.036$	
$\delta_{S}(KK)^{CP}$	$+0.022\pm0.072\pm0.004$	$+0.031 \pm 0.045$	

July 28, 2014 20 / 22

3

 $B^0 \rightarrow \Phi K^* (892)^0$

Thank you for your attention !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Backup

-∢≣⇒

- 4 日 🕨 🖌 🖹 🕨