Interpreting CP Violation in Hadronic Heavy Meson Decays

Martin Jung

technische universität dortmund

Talk at Xth Rencontres du Vietnam, Flavour Physics ICISE, Quy Nhon, Vietnam 28th of July 2014

Interpretation of CPV

Interpreting CPV inherently difficult:

- Different phenomenological sources [Talks by Tagir + Marco]
 CPV in mixing, decay and interference
- Each can receive contributions in the SM and from NP

Methods:

- SM null tests (e.g. $A_{J/\Psi K_S}^{\text{dir}} = 0$)
- "Simple" SM predictions

 (e.g. S_{J/ΨKS} = − sin 2β)
 consistency checks ⇒
- SM flavour sector established
- "Small" NP influence

Subleading SM contributions important

Extracting weak phases in hadronic decays

UT angles extracted from non-leptonic decays Hadronic matrix elements (MEs) main theoretical difficulty!

Options:

- Lattice: not yet feasible for (most) three-meson MEs
- Other non-perturbative methods: idem, precision
- QCDF/SCET: applicability, power corrections
- Symmetry methods: limited applicability or precision
- New/improved methods necessary!

UT angles extracted by avoiding direct calculation of MEs Revisit approximations for precision analyses

> Here: Improve SU(3) analysis Applications: $B \rightarrow J/\Psi P$, $B \rightarrow DD$, $D \rightarrow PP$

Flavour SU(3) and its breaking SU(3) flavour symmetry $(m_u = m_d = m_s)...$

- does not allow to calculate MEs, but relates them (WE theorem)
- provides a model-independent approach
- allows to determine MEs from data
 improves "automatically"!
- includes final state interactions

SU(3) breaking...

- is sizable, $\mathcal{O}(20-30\%)$
- can systematically be included: tensor (octet) ~ m_s
 [Savage'91,Gronau et al.'95,Grinstein/Lebed'96,Hinchliffe/Kaeding'96]
 ➡ even to arbitrary orders [Grinstein/Lebed'96]

Main questions:

- How large is the SU(3)-expansion parameter?
- Is the number of reduced MEs tractable?

flavour octet

Power counting

SU(3) breaking typically $\mathcal{O}(30\%)$

Several other suppression mechanisms involved:

- CKM structure (λ , but also $R_u \sim 1/3$)
- Topologial suppression: penguins and annihilation
- $1/N_C$ counting

All these effects should be considered!

- Combined power counting in $\delta \sim 30\%$ for all effects
- Neglect/Constrain only multiply suppressed contributions

Yields predictive frameworks with weaker assumptions!

- Uses full set of observables for related decays
- Assumptions can be checked within the analysis

Introduction

 $B
ightarrow J/\psi M$ decays - basics

- $B_d \rightarrow J/\psi K$, $B_s \rightarrow J/\psi \phi$:
 - Amplitude $A = \lambda_{cs}A_c + \lambda_{us}A_u$
 - Clearly dominated by A_c [Bigi/Sanda '81]
 - Very clear experimental signature
 - Subleading terms:
 - Doubly Cabibbo suppressed
 - Penguin suppressed
 - Stimates $|\lambda_{us}A_u|/|\lambda_{cs}A_c| \lesssim 10^{-3}$

[Boos et al.'03, Li/Mishima '04, Gronau/Rosner '09]

The golden modes of *B* physics: $|S| = \sin \phi$

However:

- Quantitative calculation still unfeasible
- Fantastic precision expected at LHC and Belle II
- Subleading contributions should be controlled: Apparent phase $\tilde{\phi} = \phi_{SM}^{mix} + \Delta \phi_{NP}^{mix} + \Delta \phi_{pen}$

 $PV \text{ in } B \rightarrow DD \text{ decays}$

Including $|A_u| \neq 0$ – Penguin Pollution

$$A_u
eq 0 \ \Rightarrow \ S
eq \sin \phi, \ A_{
m CP}^{
m dir}
eq 0$$

Idea: U-spin-related modes constrain A_u [Fleischer'99, Ciuchini et al.'05,'11, Faller/Fleischer/MJ/Mannel'09, ...]

- Increased relative penguin influence in b
 ightarrow d
- Extract $\phi = \phi_{\mathrm{SM}}^{\mathrm{mix}} + \Delta \phi_{\mathrm{NP}}^{\mathrm{mix}}$ and $\Delta \phi_{\mathrm{pen}}$
- Issue: Dependence of $\Delta \phi_{
 m pen}$ on SU(3) breaking

Using full SU(3) analysis: [MJ'12]

lacksimDetermines model-independently SU(3) breaking: $\lesssim 20\%$

Improved extraction of $\phi_d(
ightarrow \Delta \phi_{
m NP}^{
m mix})$ and $\Delta \phi_{
m pen}!$

Remaining weaker approximations:

- SU(3) breaking for A_c , only
- EWPs with $\Delta I = 1, 3/2$ neglected (tiny!)
- $A(B_s \rightarrow J/\Psi \pi^0) = 0$: testable (extremely challenging)

- Fit prediction for $S(B \rightarrow J/\Psi \pi)$ shifted
- $\Delta S \leq 0.01$, further reducible \rightarrow
- γ not accessible (RI, later)
- $BR(B^- \rightarrow J/\Psi\pi^-)/BR(B^- \rightarrow J/\Psi K^-)$: LHCb

Red/Orange: 68/95% CL, $r_{SU(3)} \le 40\%$, $r_{pen} \le 50\%$. Yellow: 95% CL, $r_{SU(3)} \le 60\%$, $r_{pen} \le 75\%$

B ightarrow DD decays [MJ/Schacht '14, in prep.]

 $B_s \rightarrow D_s^+ D_s^-$ theoretically golden mode Clean extraction of ϕ_s w/o angular analysis!

Furthermore:

- Quasi-isospin rules for rates, test $\Delta I = 1, 3/2$ NP
- Access to ϕ_d as well $(B^0 o D^+ D^-$, less clean)
- Sensitivity to annihilation

Aspects of the analysis:

- Similar to $B \rightarrow J/\Psi K$, A_u highly suppressed
- Larger rates, but experimentally more difficult
 - Recent LHCb results render analysis possible
- Singlet final states have to be included \rightarrow more MEs
- Extraction of γ not feasible because of RI
- Exp. issue: $A_{
 m CP}(t)(B^0 o D^+D^-)$ Belle/BaBar
- Assumptions: SU(3) breaking only in A_c, other terms included (theoretically restricted)

Preliminary results [MJ/Schacht '14, in prep.]

Red: expected PC. Blue: enhanced penguins (dark BaBar, light WA)

- Outside red: large penguins or NP. Outside blue: NP.
- Any sizable CPV in $b \rightarrow s$ transitions: NP
- Measurements like $A_{CP}(\bar{B}_s \rightarrow D^- D_s^+)$ influential
- Not discussed: rates provide access to isospin-breaking NP

Reparametrization invariance and NP sensitivity

$$\mathcal{A} = \mathcal{N}(1 + r \, e^{i\phi_s} e^{i \, \phi_w}) o ilde{\mathcal{N}}(1 + ilde{r} \, e^{i ilde{\phi}_s} e^{i ilde{\phi}_w})$$

Reparametrization invariance:

[London et al.'99,Botella et al.'05,Feldmann/MJ/Mannel'08]

Transformation changes weak phase, but not form of amplitude

Sensitivity to (subleading) weak phase lost (presence visible)

- $\phi_w = \gamma$ in given analyses
- Usually broken by including symmetry partners

▶ Proposals to extract γ in $B \rightarrow J/\Psi P$ or $B \rightarrow DD$

- However: partially restored when including SU(3) breaking! [MJ/Schacht'14 in prep.]
 - \clubsuit Reason for large range for γ observed in [Gronau et al.'08]
 - Extracted phase fully dependent on SU(3) treatment
- **•** NP phases in \mathcal{A} not directly visible
- NP tests remain possible (as shown)
- Addition of new terms, e.g. $A_c^{\Delta I=1}$ additional option

Introduction

Direct CPV in D decays

CPV in charm and beauty decays very different [Talk by Marko Staric]

- Extremely small $\sim |V_{cb}V_{ub}^*|/|V_{cs}V_{us}^*|\sim 2 imes 10^{-3}$
- Additionally: penguin suppression
 - again unknown, discussion after first LHCb announcement
- Idea: test specific SM SU(3) structure [Hiller/MJ/Schacht'13]
- SU(3) breaking (30 40%) for whole multiplet not trivial!
- New data: more correlations visible [Hiller/MJ/Schacht'14, in prep.]
- With new data from LHCb and Belle [Marco's talk this morning]
- Red: SM. Blue/Yellow: NP models
 Differentiable!
- Dynamical input → stronger constraints [Hiller/MJ/Schacht'14, in prep.]

Conclusions

- Smallness of NP poses new challenges to CPV interpretation
- SU(3) with breaking enables model-independent analyses
- Combined power counting of small effects necessary
- Controlling penguins is necessary for very high precision
- Possible for ϕ_d by $B \to J/\psi P |\Delta S| \lesssim 0.01$ (95% CL) correct treatment of SU(3) breaking essential BR measurements important!
- Results will improve with coming data, penguins tamed
- $B_s \rightarrow D_s^+ D_s^-$ theoretically golden mode **b** Extraction of ϕ_s w/o angular analysis
- Predictions for CPV observables from global $B \rightarrow DD$ analysis
- Various NP tests from CPV and guasi-isospin rules
- Direct CP violation in charm remains exciting
- First unbiased, comprehensive analysis of $D \rightarrow PP$
- Description possible with reasonable SU(3) breaking
- More data will help to distinguish different scenarios

Thank You!

Experimental data for $B \rightarrow J/\Psi P$

Decay	$BR/10^{-4}$	$A_{ m CP}/\%$	$S_{ m CP}$
$ar{B}^{0} ightarrow {J/\psi} ar{K}^{0}$	8.71 ± 0.32	1.0 ± 1.2	0.673 ± 0.016
$ar{B}^{0} ightarrow J/\psi \pi^{0}$	0.176 ± 0.016	10 ± 13	-0.93 ± 0.29
$B^- ightarrow J/\psi K^-$	10.13 ± 0.34	0.1 ± 0.7	—
$B^- ightarrow J/\psi \pi^-$	0.50 ± 0.04	1 ± 7	
set 2 (LHCb)	0.39 ± 0.02	$\textbf{0.5}\pm\textbf{2.9}$	
$ar{B}^s o J/\psi K^0$	0.34 ± 0.05		