

FLUCTUAT NEC MERGITUR

SHiP: Searching for Hidden Particles

Nico Serra on behalf of the SHiP collaboration

Xth Rencontres Du Vietnam Flavour Physics

ICISE, Quy Nhon, 27th July – 2nd August 2014

The high intensity frontier

New Particles are either heavy or very weakly coupled

See Oleg's presentation on Wednesday

Portals to new physics

If new particles are light they must be singlet wrt SM, so they couple with SM particles via Portals (singlet composed operators)

- Neutrino portal: new heavy neutral lepton, coupling $YH^T\overline{N}L^{\dagger}$
- Vector portal: new massive vector meson, coupling $\epsilon' B_{\mu\nu} F^{\mu\nu}$
- Higgs portal: new massive scalar, coupling $(\mu \chi + \lambda \chi^2) H^{\dagger} H^{\dagger}$
- Axion portal: massive axion like particle

and others...

Portals to new physics

If new particles are light they must be singlet wrt SM, so they couple with SM particles via Portals (singlet composed operators)

- Neutrino portal: new heavy neutral lepton, coupling $YH^T\overline{N}L^{\dagger}$
- Vector portal: new massive vector meson, coupling $\epsilon' B_{\mu\nu} F^{\mu\nu}$
- Higgs portal: new massive scalar, coupling $(\mu \chi + \lambda \chi^2) H^{\dagger} H^{\dagger}$
- Axion portal: massive axion like particle

and others...

Sterile Neutrinos

Fermions get mass via the Yukawa couplings

$$-\mathcal{L}_{\text{Yukawa}} = Y_{ij}^{d} \overline{Q_{Li}} \phi D_{Rj} + Y_{ij}^{u} \overline{Q_{Li}} \tilde{\phi} U_{Rj} + Y_{ij}^{\ell} \overline{L_{Li}} \phi E_{Rj} + \text{h.c.}$$

If we want the same coupling for neutrinos, we need right-handed (sterile) neutrinos... the most generic lagrangian is

$$\mathcal{L}_N = i\overline{N}_i \partial_\mu \gamma^\mu N_i - \frac{1}{2} M_{ij} \overline{N^c}_i N_j - Y_{ij}^\nu \overline{L_{Li}} \tilde{\phi} N_j$$

Yukawa coupling

Kinetic term Majorana mass term

See talk by B. Kayser yesterday

The nuMSM

- N_1 with a mass in the KeV region plays the role of Dark Matter
- $N_{2,3}$ have mass in the GeV region, are quasi degenerate, give mass to active neutrinos and produce the baryon-antibaryon asymmetry in the Universe

See Oleg's presentation on Wednesday See Dima's presentation later See Dima's presentation later

Present status

Constraints from Canetti, Drewesb, Frossardd and Shaposhnikov arXiv:1208.4607 and references therein

Production and decays

- Produced via the (small) mixing with active neutrinos (mainly coming from D-meson decays)
- Typical lifetime of the order of $10\mu s$, i.e. decay length O(Km)
- Number of events proportional to U^4

Decays $N_{2,3} \rightarrow \ell^- h^+, \ \ell^- \ell^+ \nu, \ h^0 \nu$

See Walter's presentation

SHiP Experiment

Proposal for a fix target experiment at SPS (arXiv:1310.1762)

- Large number of protons on target $4 5 \times 10^{13}$ per 6-7s at $400 \text{GeV} \rightarrow 2 \times 10^{20} \text{ POT}$
- Slow beam extraction (1s) to minimize backgrund and occupancy
- Target consisting of heavy material to stop π and K before they decay in active neutrinos
- Long muon shield to range out the flux of muons
- Evacuated decay volume

Concept of the experiment

Muon Shield

Muon rate 5×10^9 muons/spill

- Acceptable rate $< 10^5$ muons per spill
- Main source of muons from η , η' , ω , etc...
- Studying solution with passive or active filter

Decay Volume

Vacuum tank (similar to NA62) with 1e-2 mbar (instead of 1e-5 mbar)

- MA62-like straw chambers, 120um resolution and 0.5% X0/X
- LHCb-like magnet 0.5Tm over 5m
- LHCb-like shashlik calorimeter
- Veto chambers at the entrance of the vacuum tank to veto muons and strangeness from surroundings

Background rejection

- 2×10^4 neutrino interactions per 2×10^{20} POT in the decay volume at atmospheric pressure, negligible at 10^{-2} mbar
- K_L production from $\nu + A \to K_L (\to \mu \nu \pi) X$
- 10% ν interactions produce Λ and K^0 in acceptance
- Majority of the decays in the first 5m of the decay volume
- Muon filter to reduce background from muon DIS to a negligible level

Fighting hard to design a zero background experiment

CERN accelerator complex

Expected SHiP sensitivity to nuMSM

Scan most of the interesting region below the charm mass

What about higher masses

- Studied the sensitivity for TLEP, running at the Z^0 c.m.
- Assuming $10^{12-13} Z^0$ produced (see talk by Alain Blondel at ICHEP)
- Experimental signatures:
 - -2 jets + lepton displaced from the PV
 - -2 leptons + (neutrino) displaced from the PV
- Assumption we can fight the $Z \to b\overline{b}$, $Z(Z/\gamma)^*$ and W^*W^* backgrounds

What about higher masses

*In collaboration with

E. Graverini, M. Shaposhnikov and A. Blondel

What about higher masses

*In collaboration with

E. Graverini, M. Shaposhnikov and A. Blondel

Tau neutrinos

- The same optimization for sterile neutrinos in the GeV region also maximises the flux of ν_{τ}
- Source of ν_{τ} and $\overline{\nu}_{\tau}$ is $D_s \to \tau \nu_{\tau}$
- Also high rate of ν_e from charm

Tau neutrinos physics

- So far 4 ν_{τ} events observed by OPERA and 9 by DONUT
- We expect between 3000-4000 reconstructed ν_{τ} per 2 × 10²⁰ POT
- Physics goals:
 - First observation of $\overline{\nu}_{\tau}$, which has never been observed
 - $-\tau_{\nu}$ and $\overline{\nu}_{\tau}$ cross section measurements
 - Charm physics with τ_{ν} and $\overline{\nu}_{\tau}$
 - $-\nu_e$ cross section at high energy to measure charm hadron production (possible normalization for HNLs)

Tau neutrino detector

- ν_{τ} target: Opera-like bricks, laminated lead and nuclear emulsions (for micrometric resolution)
- 750 Opera-like bricks, to be replaced 10 times
- Muon spectrometer to measure charge and momentum and give time stamp 22

Dark Photon

- Models with hidden sector offer a natural candidate for DM
- Many of these models predict the existence of a massive Dark Photon, which can mix with the SM photon, with a strengh ϵ

•
$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \mathcal{L}_{hidden} + \frac{\epsilon}{2} A'_{\mu\nu} F^{\mu\nu}$$

- Production:
 - $-p + A \rightarrow p'\gamma + A$
 - Meson decays, e.g. $\pi^0 \to \gamma \gamma$

Process	$n_{\gamma'}/p.o.t$
$\pi^0 o \gamma \gamma'$	$\varepsilon^2 \times 5.41$
$\eta ightarrow \gamma \gamma'$	$\varepsilon^2 imes 0.23$
$\omega ightarrow \pi^0 \gamma'$	$\varepsilon^2 \times 0.07$
$\eta' ightarrow \gamma \gamma'$	$\varepsilon^2 \times 10^{-3}$
	$\begin{array}{c} Process \\ \pi^0 \to \gamma \gamma' \\ \eta \to \gamma \gamma' \\ \omega \to \pi^0 \gamma' \\ \eta' \to \gamma \gamma' \end{array}$

Present status

SHiP sensitivity to DP

SHiP can strongly improved bounds on Dark Photons

Other searches

Many other models can be tested

- Models with light scalars mixing with the Higgs boson, i.e. 2HDM + singlet, light inflaton, ... see for instance J.Clarke arXiv:1310.8042, Bezrukov and Gorbunov arXiv:1303.4395
- Models with light pseudoscalars, see for instance arXiv:1008.0636
- Models with light sgoldstino, see for instance arXiv:hep-ph/0007325
- In general models with long leaved very weakly interacting particles

Conclusions

- Good physics case for a new beam dump experiment at SPS
 - Search for sterile neutrinos in the GeV region, in particular νMSM
 - Search for long lived very weakly interacting particles
 - $-\nu_{\tau}$ physics
- The SHiP collaboration submitted a Expression of Interest at SPSC, and aims to submit a Technical Proposal next year
- We had the first workshop and collaboration meeting in Zurich (cern.ch/ship/SHIP_workshop.html)
- More than 20 institutes expressed interest in participating to the TP

If you are interested get in touch! www.cern.ch/ship

FLUCTUAT NEC MERGITUR

SHE IS TOSSED BY THE WAVES BUT DOES NOT SINK

Beam

	Baseline
Beam	protons
Momentum [GeV/c]	395 or 405
Beam Intensity [10 ¹³ p/cycle]	4.5
Cycle length [s]	7.2
Spill duration [s]	1.0
Average power [kW]	300
Expected r.m.s. spot size (H/V) [mm]	6/6

Tracking

Figure 11: Estimated momentum resolution of the spectrometer (solid line) with separate contributions from multiple scattering (dotted line) and chamber resolution (dashed line).

are still dominated by MS (0.5% total x/x0 for 4 views/station)

With a yoke with outer dimension of $8.0 \times 7.5 \times 2.5 \text{ m}^3$, and two Al-99.7 coils, the proposed magnet provides a peak field of $\sim 0.2 \text{ T}$, and a $\int BdL \approx 0.5 \text{ Tm}$ over a length of $\sim 5 \text{ m}$. For comparison, the LHCb magnet mentioned above contains $\sim 40 \%$ more iron for its yoke, and dissipates three times more power.

Material: Straw mass production: Main parameters
Mylar (PET), 36 μm with Al (0.75 μm at both side) or Cu+Au: (0.050+0.020 μm)
Material budget (per view):
Straws - (0.93% - 0.95) %X ₀ (450 straws) Wires - 0.0046 %X ₀ (Luma 861) Gas mixture - 0.010 %X ₀ (CO ₂ 80%+CF ₄ 5%+Isobutene 5% or Ar 70%+CO ₂ 30%) Inner supports - 0.020 %X ₀ (Ultem bushes)
Straw dimensions and quality:
 9.775±0.025 mm (9.2 mm effective area) Length - 2360 mm (2100 mm active area) Straightness - 0.1 mm Elongation - 2.0 mm per m at 1 bar increasing - 0.08 mm per 1 atm overpressure Gas flow - 2.56 cm³/min (70 cm³/min per view)
Production technology and rate: Ultrasonic welding, up to 400 mm straw per 1 minute
S Mouchan NA62 straw tracker

11-Jun-14

S.Movchan NA62 straw tracker SHIP workshop, Zurich, 2014

Geometry

Figure 8: Fraction of HNL in the detector acceptance as a function of the length of the fiducial volume. Open circles: a single spectrometer following a fiducial volume of a given length. Full circles: two spectrometers in series, each following a fiducial volume of half the given length. The spectrometer length is fixed to 10 m.

	A shirida a	2014	2015	2016	2017	20	018	2019	2020	2021	2022	2023	2024	2025	2026	
	Activity	01 02 03 04	0,1 0,2 0,3 0,4	0,1 0,2 0,3 0,4	0,1 0,2 0,3 0,4	C1 Q2	Q3 Q4	0,1 0,2 0,3 0,4	0,1 0,2 0,8 0,4	0, 0,2 0,8 0,4	Q1 Q2 Q3 Q4	0,1 0,2 0,3 0,4	Q1 Q2 Q3 Q4	01 02 03 04	01 02 03 04	
	LHC operation															
	SPS operation															
Operation	Facility HW commissioning/dry runs on availability															
	SHIP facility commissioning with beam												. 1	Ţ		
	SHIP facility operation															
etector	SHIP Technical Proposal															
	SHIP Project approval															
	Technical Design Reports and R&D															
	TDR approval															
-	Detector production															
	Detector installation															
gu	Pre-construction activities(Design, tendering, permits)															
/il erin	CE works for extraction tunnel, target complex															
gine Ci	CE works for TDC2 junction cavern															
En	CE works for filter tunnel and detector hall						Iî .									
ıre	Installation in TT20 (150m)															
ruct	Installation for new beam line to target															
astr	Installation in target complex, filter tunnel															
Infr	Installation in detector hall															
	Design studies, specs and tender docs															
	Integration studies									1						
	Technical Design Report															
Beam Line	Manufacturing new components															
	Refurbishment existing components															
	TT20 dismantling (150m)								-							
	TT20 re-installation and tests															
	New beam line to target installation and tests															
	Muon filter installation															
Target mplex/Target	Target complex design studies, specs and tender docs															
	Target complex integration studies															
	Target complex services - design and manufacturing		↓													
	Target studies and prototyping															
CO	Target production and installation															

Trigger

Compare SHiP↔LHCb-upgrade again:

- SHiP: $10^5 \ \mu/s$ (/spill of 7 s), only 1 track/event.
- LHCb (2019): 10^9 tracks/s, in complicated events. Estimated CPU-farm: $\sim 3-4$ MCHF.

Conclusion: SHiP "farm" is tiny, i.e. one node with few dozen CPU cores.

Storage: write all "events" (10 kB/event?), with at least 1 track reconstructed.

- SHiP: $10^5 \times 10 \text{ kB} \times 10^6 \text{ spills} = 1 \text{ pB/year}$.
- LHCb-upgrade: 20(?) kHz $\times 100$ kB/event $\times 5.10^{6}$ s=10 pB/year.

Or, if we do not like to write 1 pB/year:

Veto events with hits in VETO, which do not point at emulsion: order(s) of magnitude less?

Detector design: first option

Wall thickness ~ 13 cm: 8 cm brick + 5 cm tracker plane

Working hypotheses

- Detector located ~60m from the proton target
- Charm production cross-sections in p-W affected by large uncertainties
- Compare with DONUT to extrapolate the expected numbers
- Energy dependence of σ_{cc} and v_{τ} cross-section, acceptance: production ~ 0.36, detector acceptance ~ 0.2, energy dependence of the v_{τ} cross-section ~0.52 \rightarrow DONUT/SHIP ~ 26
- 2 x 10²⁰ pot for SHIP compared to 3.6 x 10¹⁷ DONUT → ~ 550 in favour of SHIP
- Overall rate SHIP/DONUT ~ 20
- DONUT observed 9 events with a background of $1.5 \rightarrow 7.5\pm3$ (40% error)
- 150 events expected with the same mass (260 kg)
- Measurement of v_{τ} and anti- v_{τ} cross-section, including the study of structure functions sets the scale for the mass: ~ 6 tons for ~ 3400 v_{τ} interactions
- Assume OPERA-like bricks (8.3 kg) and wall target structure: ~ 750 bricks

Working hypotheses

- Detector located ~60m from the proton target
- Charm production cross-sections in p-W affected by large uncertainties
- Compare with DONUT to extrapolate the expected numbers
- Energy dependence of σ_{cc} and v_{τ} cross-section, acceptance: production ~ 0.36, detector acceptance ~ 0.2, energy dependence of the v_{τ} cross-section ~0.52 \rightarrow DONUT/SHIP ~ 26
- 2 x 10²⁰ pot for SHIP compared to 3.6 x 10¹⁷ DONUT → ~ 550 in favour of SHIP
- Overall rate SHIP/DONUT ~ 20
- DONUT observed 9 events with a background of $1.5 \rightarrow 7.5\pm3$ (40% error)
- 150 events expected with the same mass (260 kg)
- Measurement of v_{τ} and anti- v_{τ} cross-section, including the study of structure functions sets the scale for the mass: ~ 6 tons for ~ 3400 v_{τ} interactions
- Assume OPERA-like bricks (8.3 kg) and wall target structure: ~ 750 bricks