Lepton Flavor Violation in the Standard Model with general Dimension-6 Operators.

Janusz Rosiek based on JHEP 1404 (2014) 167, A. Crivellin, S. Najjari, JR Qui Nhon, 1 Aug 2014

- Lepton Flavor Violation in the SM
- SM extensions parametrization: effective higher dimension operators
- Physical observables calculation
 - radiative lepton decays $l
 ightarrow l' \gamma$
 - charged lepton EDMs and g-2 anomaly
 - 3-body LFV charged lepton decays $l \rightarrow l' l'' l'''$
 - $Z^0 \rightarrow ll'$ decays
- Numerical results and bounds
- Conclusions

J. Rosiek, Lepton Flavor Violation in the SM with general Dimension-6 Operators.

No flavor and CP violation in the lepton sector of SM with massless neutrinos.

Neutrino mass discovery shows explicit LFV violation!

Charged lepton sector – good laboratory to search for New Physics:

SM effects negligible, GIM-suppressed by $m_{
u}^2/M_W^2 \sim 10^{-25}$

LFV processes "theoretically clean", no non-perturbative QCD effects.

Two possible approaches:

- Construct specific New Physics model; calculate LFV observables; compare with experimental bounds to constrain model parameters.
 Time and labor consuming - full calculation need to be done for each model separately.
- 2. Parametrize New Physics effects in terms of higher dimension operators. Express LFV observables in terms of Wilson coefficients.

Model independent - needs to be done just once. Only Wilson coefficients need to be calculated within specific models.

2. Effective operator approach

Advantages - completeness and automatic gauge invariance.

Start from full operator basis:

$$\mathcal{L}_{SM} = \mathcal{L}_{SM}^{(4)} + \frac{1}{\Lambda} \sum_{k} C_k^{(5)} Q_k^{(5)} + \frac{1}{\Lambda^2} \sum_{k} C_k^{(6)} Q_k^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right) .$$

$$\mathcal{L}_{SM}^{(4)} - \text{standard renormalizable dim-4 SM Lagrangian.}$$

Full list of dimension 5- an 6-operators: Buchmiller-Wiler 1986

Reduced to minimal set: Grządkowski, Iskrzyński, Misiak, JR 2010 - 59 (64 if baryon number not conserved) independent operators.

LFV related (φ - Higgs doublet, B, W - U(1), SU(2) gauge bosons):

lll		$\ell\ell X\varphi$		$\ell\ell arphi^2 D$ and $\ell\ell arphi^3$	
$Q_{\ell\ell}$	$(ar{\ell}_i\gamma_\mu\ell_j)(ar{\ell}_k\gamma^\mu\ell_l)$	Q_{eW}	$(ar{\ell}_o\sigma^{\mu u}e_j) au^Iarphi W^I_{\mu u}$	$Q^{(1)}_{arphi\ell}$	$(arphi^\dagger i\overleftrightarrow{D}_\muarphi)(ar{\ell}_i\gamma^\mu\ell_j)$
Q_{ee}	$(ar{e}_i\gamma_\mu e_j)(ar{e}_k\gamma^\mu e_l)$	Q_{eB}	$(ar{\ell}_i \sigma^{\mu u} e_j) arphi B_{\mu u}$	$Q^{(3)}_{arphi\ell}$	$(arphi^\dagger i \overleftarrow{D}^I_\mu arphi) (ar{\ell}_i au^I \gamma^\mu \ell_j)$
$Q_{\ell e}$	$(ar{\ell}_i\gamma_\mu\ell_j)(ar{e}_k\gamma^\mu e_l)$			$Q_{arphi e}$	$(arphi^\dagger i\overleftrightarrow{D}_\muarphi)(ar{e}_i\gamma^\mu e_j)$
				$Q_{earphi 3}$	$(arphi^{\dagger}arphi)(ar{\ell}_i e_j arphi)$
$\ell\ell q q$					
$Q_{\ell q}^{(1)}$	$(ar{\ell}_i\gamma_\mu\ell_j)(ar{q}_k\gamma^\mu q_l)$	$Q_{\ell d}$	$(ar{\ell}_i\gamma_\mu\ell_j)(ar{d}_k\gamma^\mu d_l)$	$Q_{\ell u}$	$(ar{\ell}_i\gamma_\mu l_j)(ar{u}_k\gamma^\mu u_l)$
$Q_{\ell q}^{(3)}$	$(ar{\ell}_i\gamma_\mu au^I\ell_j)(ar{q}_k\gamma^\mu au^Iq_l)$	Q_{ed}	$(ar{e}_i\gamma_\mu e_j)(ar{d}_k\gamma^\mu d_l)$	Q_{eu}	$(ar{e}_i\gamma_\mu e_j)(ar{u}_k\gamma^\mu u_l)$
Q_{eq}	$(ar{e}_i\gamma^\mu e_j)(ar{q}_k\gamma_\mu q_l)$	$Q_{\ell e d q}$	$(ar{\ell}^a_i e_j)(ar{d}_k q^a_l)$	$Q_{\ell equ}^{(1)}$	$(ar{\ell}^a_i e_j)arepsilon_{ab}(ar{q}^b_k u_l)$
				$Q_{\ell equ}^{(3)}$	$(ar{\ell}^a_i\sigma_{\mu u}e_a)arepsilon_{ab}(ar{q}^b_k\sigma^{\mu u}u_l)$

"Complete" set - other operators give LFV effects suppressed by m_{ν}^2/M_W^2 .

19 (+1 of dim-5) Wilson coefficients - too many, small predictive power.

1. Only dim-5 term (Weinberg operator) $Q_{\nu\nu} = \varepsilon_{ab}\varepsilon_{cd}\varphi^a\varphi^c(\ell_i^b)^T C\ell_j^d$ does not contribute directly to LFV processes in the charged lepton sector. 2. $Q_{e\varphi3} = (\varphi^{\dagger}\varphi)(\bar{\ell}_i e_j \varphi)$ gives off-diagonal corrections to fermion masses. Rediagonalization \rightarrow LFV effect in charged lepton sector negligible.

3. Contributions of most of the 2-lepton-2 quark operators vanish or suppressed by m_l/M_W powers.

4. Goldstone/Higgs couplings to leptons - always suppressed by m_l/M_W powers \rightarrow we neglect all physical Higgs diagrams.

9 operators remain:

- 2: $(\ell \ell \varphi X)$ -type operators modify $\gamma ll'$ vertex
- **3:** $(\ell\ell)(\varphi D\varphi)$ -type operators modify Zll', Wl'v vertices
- **3:** 4-lepton contact couplings
- **1:** 2-lepton 2-quark coupling.

3. Effective lepton-photon coupling

Related observables: radiative lepton decays ($\mu \rightarrow e\gamma$), EDMs and AMMs of charged leptons.

The general form of the flavor violating photon-lepton vertex::

$$V_{\ell\ell\gamma}^{fi\,\mu} = \frac{i}{\Lambda^2} \Big[\gamma^{\mu} (F_{VL}^{fi} P_L + F_{VR}^{fi} P_R) + (F_{SL}^{fi} P_L + F_{SR}^{fi} P_R) q^{\mu} \\ + (F_{TL}^{fi} i \sigma^{\mu\nu} P_L + F_{TR}^{fi} i \sigma^{\mu\nu} P_R) q_{\nu} \Big]$$

Most important: "tensor" F_{TL} , F_{TR} . Tree level LFV contribution exist:

$$\gamma^{\mu} \xrightarrow{q \to \ell_{i}} \ell_{f} \qquad i \left(e \gamma^{\mu} \delta^{fi} + i \sigma^{\mu\nu} \left[C_{\gamma L}^{fi} P_{L} + C_{\gamma R}^{fi} P_{R} \right] q_{\nu} \right)$$
$$C_{fi}^{\gamma R} = C_{fi}^{\gamma L \star} = \frac{v \sqrt{2}}{\Lambda^{2}} \left(c_{W} C_{eB}^{fi} - s_{W} C_{eW}^{fi} \right)$$

 $\bar{\ell}\sigma^{\mu\nu}\ell F_{\mu\nu}$ coupling non-renormalizable - generated radiatively, Wilson coefficients C_{eB}, C_{eW} inherently contain loop suppression factors.

Other operators can be generated at tree level, like contact 4-lepton coupling via contraction of the heavy boson propagator.

It make sense to add 1-loop terms from other operators to tree-level C_{eB}, C_{eW} terms!

1-loop calculation relatively complicated - quadruple- and quintuplevertices appear with new Dirac structures and momentum dependence.

J. Rosiek, Lepton Flavor Violation in the SM with general Dimension-6 Operators.

Non-trivial internal test – gauge invariance, requires for $i \neq j$:

$$F_{VL} = F_{VR} = 0$$
 for $p_i^2 = m_{\ell_i}^2, \ p_f^2 = m_{\ell_f}^2, \ q^2 = 0.$

Calculations performed in two independent approaches:

1. Passarino-Veltman reduction of tensor loop integrals in the fixed Feynman gauge (R_{ξ} with $\xi = 1$)

2. Asymptotic expansion of loop integrals in the general R_{ξ} gauge.

Both approaches agree and confirm explicit gauge invariance.

Final 1-loop results for tensor form-factors compact and simple:

$$F_{TL}^{ZWG fi} = \frac{4e \left[C_{\varphi \ell}^{(1)fi} m_f (1+s_W^2) - \left(C_{\varphi \ell}^{(3)fi} m_f + C_{\varphi e}^{fi} m_i \right) \left(\frac{3}{2} - s_W^2 \right) \right]}{3(4\pi)^2}$$
$$F_{TR}^{ZWG fi} = \frac{4e \left[C_{\varphi \ell}^{(1)fi} m_i (1+s_W^2) - \left(C_{\varphi \ell}^{(3)fi} m_i + C_{\varphi e}^{fi} m_f \right) \left(\frac{3}{2} - s_W^2 \right) \right]}{3(4\pi)^2}$$

$$F_{TL}^{4\ell fi} = \frac{2e}{(4\pi)^2} \sum_{j=1}^{3} C_{\ell e}^{fjji} m_j$$
$$F_{TR}^{4\ell fi} = \frac{2e}{(4\pi)^2} \sum_{j=1}^{3} C_{\ell e}^{jifj} m_j$$

$$F_{TL}^{ql\ fi} = -\frac{16e}{3(4\pi)^2} \sum_{j=1}^{3} C_{\ell equ}^{(3)fijj\star} m_{u_j} \left(\Delta - \log \frac{m_{u_j}^2}{\mu^2}\right)$$
$$F_{TR}^{ql\ fi} = -\frac{16e}{3(4\pi)^2} \sum_{j=1}^{3} C_{\ell equ}^{(3)fijj} m_{u_j} \left(\Delta - \log \frac{m_{u_j}^2}{\mu^2}\right)$$

 $Q_{\ell equ}^{(3)} = (\bar{\ell}_i^a \sigma_{\mu\nu} e_a) \varepsilon_{ab} (\bar{q}_k^b \sigma^{\mu\nu} u_l)$ can only be loop generated - its (infinite) 1-loop contribution double-loop suppressed \rightarrow can be neglected.

J. Rosiek, Lepton Flavor Violation in the SM with general Dimension-6 Operators.

Final result for F_{TL} , F_{TR} depend on 6 Wilson coefficients:

tree level –
$$C_{eB}, C_{eW}$$

one loop – $C_{\varphi\ell}^{(1)}, C_{\varphi l}^{(3)}, C_{\varphi e}, C_{\ell e}$.

Applications of effective lepton-photon coupling:

• radiative lepton decays $\ell_i \rightarrow \ell_f \gamma$ $(\mu \rightarrow e\gamma, \tau \rightarrow e\gamma, \mu\gamma)$:

$$\operatorname{Br}\left[\ell_{i} \to \ell_{f}\gamma\right] = \frac{m_{\ell_{i}}^{3}}{16\pi\Lambda^{4}\Gamma_{\ell_{i}}}\left(\left|F_{TR}^{fi}\right|^{2} + \left|F_{TL}^{fi}\right|^{2}\right)$$

• charged leptons anomalous magnetic moments:

$$a_{\ell_i} = \frac{2m_{\ell_i}}{e\Lambda^2} \operatorname{Re}\left[F_{TR}^{ii}\right]$$

• charged leptons electric dipole moments

$$d_{\ell_i} = \frac{-1}{\Lambda^2} \operatorname{Im} \left[F_{TR}^{ii} \right]$$

4. Tree-level decays: $l \to l' l'' l'''$ and $Z^0 \to \ell_f^- \ell_i^+$

3-body charged lepton decays - various final state compositions:

- 3 leptons of the same flavor: $\mu^{\pm} \rightarrow e^{\pm}e^{+}e^{-}$, $\tau^{\pm} \rightarrow e^{\pm}e^{+}e^{-}$ and $\tau^{\pm} \rightarrow \mu^{\pm}\mu^{+}\mu^{-}$.
- 3 distinguishable leptons: $\tau^{\pm} \rightarrow e^{\pm} \mu^{+} \mu^{-}$ and $\tau^{\pm} \rightarrow \mu^{\pm} e^{+} e^{-}$.
- 2 lepton of the same flavor and charge and 1 with different flavor and opposite charge: $\tau^{\pm} \rightarrow e^{\mp} \mu^{\pm} \mu^{\pm}$ and $\tau^{\pm} \rightarrow \mu^{\mp} e^{\pm} e^{\pm}$ (exotic, $\Delta L = 2!$).

Tricky phase space integral, photon propagator $1/q^2 \sim 1/m_l^2$ diverges in corners of phase space \rightarrow photon contribution enhanced by logarithmic factor $\log(m_l^2/m_{l'}^2)$.

 $Z^0 \rightarrow \ell_f^- \ell_i^+$ decays - interesting observation: γll and Zll decays depend on "orthogonal" combinations $(c_W C_{eB}^{fi} - s_W C_{eW}^{fi})$, $(s_W C_{eB}^{fi} + c_W C_{eW}^{fi})$.

5. Numerical analysis and bounds on Wilson coefficients

Assumption: no fine-tuning or large cancellations. Then:

- anomalous tree-level $\gamma ll'$ coupling best constrained by radiative lepton decays
- Zll' coupling and contact 4-lepton couplings best constrained by the three-body charged lepton decays

First approximation - constrain $\gamma ll'$ couplings from limits on $Br[\ell_i \rightarrow \ell_f \gamma]$, assuming all other Wilson coefficients negligible $(C_{\gamma} = c_W C_{eB}^{fi} - s_W C_{eW}^{fi})$:

$$\begin{split} &\sqrt{\left|C_{\gamma}^{12}\right|^{2} + \left|C_{\gamma}^{21}\right|^{2}} &\leq 2.45 \times 10^{-10} \left(\frac{\Lambda}{1 \text{ TeV}}\right)^{2} \sqrt{\frac{\text{Br}\left[\mu \to e\gamma\right]}{5.7 \times 10^{-13}}}, \\ &\sqrt{\left|C_{\gamma}^{13}\right|^{2} + \left|C_{\gamma}^{31}\right|^{2}} &\leq 2.35 \times 10^{-6} \left(\frac{\Lambda}{1 \text{ TeV}}\right)^{2} \sqrt{\frac{\text{Br}\left[\tau \to e\gamma\right]}{3.3 \times 10^{-8}}}, \\ &\sqrt{\left|C_{\gamma}^{23}\right|^{2} + \left|C_{\gamma}^{32}\right|^{2}} &\leq 2.71 \times 10^{-6} \left(\frac{\Lambda}{1 \text{ TeV}}\right)^{2} \sqrt{\frac{\text{Br}\left[\tau \to e\gamma\right]}{4.4 \times 10^{-8}}}. \end{split}$$

Numbers dividing the branching ratios – the current experimental bounds.

Strong bounds on C_{γ} for $\Lambda \sim 1$ TeV: 10^{-10} for $\mu \rightarrow e$ transitions 10^{-6} for $\tau \rightarrow \mu, e$ transitions.

Next: assume $C_{\gamma}^{fi} \to 0$ and use the bounds from the $Br(\ell_i \to \ell_f \ell_f \bar{\ell}_f)$:

$$C_{\mu eee} \leq 3.29 \times 10^{-5} \left(\frac{\Lambda}{1 \text{ TeV}}\right)^2 \sqrt{\frac{\text{Br}\left[\mu \to eee\right]}{1 \times 10^{-12}}},$$

$$C_{\tau eee} \leq 1.28 \times 10^{-2} \left(\frac{\Lambda}{1 \text{ TeV}}\right)^2 \sqrt{\frac{\text{Br}\left[\tau \to eee\right]}{2.7 \times 10^{-8}}},$$

$$C_{\tau \mu \mu \mu} \leq 1.13 \times 10^{-2} \left(\frac{\Lambda}{1 \text{ TeV}}\right)^2 \sqrt{\frac{\text{Br}\left[\tau \to \mu \mu \mu\right]}{2.1 \times 10^{-8}}},$$

with $C_{\ell_i \ell_f \ell_f \ell_f}$ given by

$$C_{\ell_{i}\ell_{f}\ell_{f}\ell_{f}} = \left| 0.46 \left(C_{\varphi\ell}^{(1)fi} + C_{\varphi\ell}^{(3)fi} \right) + C_{\ell e}^{fiff} \right|^{2} + 2 \left| C_{\ell e}^{fiff} - 0.54 \left(C_{\varphi\ell}^{(1)fi} + C_{\varphi\ell}^{(3)fi} \right) \right|^{2} + \left| C_{\ell e}^{fffi} - 0.54 \left(C_{\varphi e}^{fi} \right)^{2} + 2 \left| C_{e e}^{fiff} + 0.46 \left(C_{\varphi e}^{fi} \right)^{2} \right|^{2} \right|^{2}$$

Bounds on Wilson coefficient of the LFV 4-lepton and the Z^0 -lepton-lepton vertices for $\Lambda \sim \mathcal{O}(1)$ TeV:

 10^{-5} for $\mu \rightarrow e$ transitions

 10^{-2} for $\tau \to \mu$ and $\tau \to e$ transitions.

Bounds weaker than for anomalous photon couplings, but these coefficients can be tree level generated, so potentially larger.

Last bound from $Z^0 \to \ell_f^{\pm} \ell_i^{\mp}$:

$$\begin{split} &\sqrt{\left|C_{\varphi\ell}^{(1)12}+C_{\varphi\ell}^{(3)12}\right|^{2}+\left|C_{\varphi e}^{12}\right|^{2}+\left|C_{Z}^{12}\right|^{2}+\left|C_{Z}^{21}\right|^{2}} &\leq 0.06\left(\frac{\Lambda}{1\,\text{TeV}}\right)^{2}\sqrt{\frac{\text{Br}\left[Z^{0}\rightarrow\mu^{\pm}e^{\mp}\right]}{1.7\times10^{-6}}} \\ &\sqrt{\left|C_{\varphi\ell}^{(1)13}+C_{\varphi\ell}^{(3)13}\right|^{2}+\left|C_{\varphi e}^{13}\right|^{2}+\left|C_{Z}^{13}\right|^{2}+\left|C_{Z}^{31}\right|^{2}} &\leq 0.14\left(\frac{\Lambda}{1\,\text{TeV}}\right)^{2}\sqrt{\frac{\text{Br}\left[Z^{0}\rightarrow\tau^{\pm}e^{\mp}\right]}{9.8\times10^{-6}}} \\ &\sqrt{\left|C_{\varphi\ell}^{(1)23}+C_{\varphi\ell}^{(3)23}\right|^{2}+\left|C_{\varphi e}^{23}\right|^{2}+\left|C_{Z}^{23}\right|^{2}+\left|C_{Z}^{32}\right|^{2}} &\leq 0.16\left(\frac{\Lambda}{1\,\text{TeV}}\right)^{2}\sqrt{\frac{\text{Br}\left[Z^{0}\rightarrow\tau^{\pm}\mu^{\mp}\right]}{1.2\times10^{-5}}} \\ &\text{Less stringent but constrain "orthogonal" combination of } C_{eB}, C_{eW}. \end{split}$$

Correlations of Wilson coefficients.

Example: correlation of $Z(W)ll-\gamma ll$ couplings.

Allowed regions in the $C_{eW}^{fi} - C_{\varphi e}^{fi}$ plane for $\Lambda = 10$ TeV. Red, yellow: $\ell_i \to \ell_f \gamma$, $\ell_i \to \ell_f \ell_f \bar{\ell}_f$. The contour lines: $Br(Z^0 \to \ell_f \ell_i)$.

Photon couplings better constrained by $l' \rightarrow l\gamma$, Z, W couplings by $l \rightarrow 3l$ decays.

Constraints from $Z^0 \to \ell_f^{\pm} \ell_i^{\mp}$ decays weaker but still useful as they are complementary to bounds from $\ell_i \to \ell_f \gamma$:

Allowed regions from $Br[Z^0 \to \tau \mu]$ (yellow) and $Br[\tau \to \mu \gamma]$ (blue) in the $C_{eW}^{23} - C_{eB}^{23}$ plane for $\Lambda = 1$ TeV.

Ratios of decay rates – independent of New Physics scale Λ .

In the photon domination scenario decay rates strictly related:

$$R_{fi} \equiv \frac{Br(\ell_i \to 3\ell_f)}{Br(\ell_i \to \ell_f \gamma)} = \frac{\alpha}{3\pi} (\log \frac{m_f^2}{m_i^2} - \frac{11}{4})$$

Crucial for experiments: no need to test $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$ separately ?

Lepton number conserving observables.

Anomalous magnetic moments: Example: muon g - 2 anomaly.

$$\Delta a_{\mu} = 2.43 \times 10^{-4} \operatorname{Re} \left[2 \times 10^{-5} C_{\ell e}^{3223} + C_{\gamma}^{22} \right] \left(\frac{1 \operatorname{TeV}}{\Lambda} \right)^{2},$$

To be compared with measurement: $\Delta a_{\mu}^{exp} \approx (2.7 \pm 0.8) \times 10^{-9}$

Electric Dipole Moments (normalized to current exp. bounds):

$$d_{e}/d_{e}^{exp} = -7.9 \times 10^{10} \text{ Im} \left[2 \times 10^{-5} C_{\ell e}^{3113} + C_{\gamma}^{11}\right] \left(\frac{1 \text{ TeV}}{\Lambda}\right)^{2}$$
$$d_{\mu}/d_{\mu}^{exp} = -36.1 \text{ Im} \left[2 \times 10^{-5} C_{\ell e}^{3223} + C_{\gamma}^{22}\right] \left(\frac{1 \text{ TeV}}{\Lambda}\right)^{2}$$
$$d_{\tau}/d_{\tau}^{exp} = -0.69 \text{ Im} \left[C_{\gamma}^{33}\right] \left(\frac{1 \text{ TeV}}{\Lambda}\right)^{2}$$

6. Conclusions

- Several experimentally well constrained LFV processes calculated within the SM extended with all LFV dim-6 operators.
- Predictions in terms of Wilson coefficients all relevant contributions included, results automatically gauge-invariant.
- Approximate numerical formulae based on current exp. bounds specific NP models can be tested just calculating Wilson coefficients.
- "Typical" bounds on LFV Wilson coefficients discussed depending on New Physics scale Λ - usually very strong for $\Lambda = O(1)$ TeV.
- Examples of correlations between various Wilson coefficients shown.