Low-scale baryogenesis

Takehiko Asaka (Niigata Univ.)

Xth Rencontres du Vietnam Flavor Physics Conference

ICISE, QUY NHON, VN (27 July-2 August 2014)

@Vietnam (2014/08/01)

Baryon asymmetry of the universe (BAU)

Baryon Number B = (# of baryons) - (# of antibaryons)

$$\frac{n_B}{s} = (8.579 \pm 0.109) \times 10^{-11}$$

Planck 2013 results arXiv:1303.5076

- n_B : Baryon number density
- s: Entropy density

Introduction

Neutrino mass scales

- Atmospheric: $\Delta m_{\rm atm}^2 \simeq 2.4 \times 10^{-3} {\rm eV}^2$
- **Solar** : $\Delta m_{\rm sol}^2 \simeq 7.5 \times 10^{-5} {\rm eV}^2$

\Rightarrow Need for physics beyond the SM !

- Important questions:
 - "What is the origin of neutrino masses?"
 - "What is the implications of it?"
 - "How do we test it experimentally?"

Extension by RH neutrinos v_R

$$\delta L = i \overline{\nu_R} \partial_\mu \gamma^\mu \nu_R - F \overline{L} \nu_R \Phi - \frac{M_M}{2} \overline{\nu_R} \nu_R^c + \text{h.c.}$$

Minkowski '77 Yanagida '79 Gell-Mann, Ramond, Slansky '79 Glashow '79

• Seesaw mechanism $(M_D = F \langle \Phi \rangle \ll M_M)$

$$-L = \frac{1}{2} (\overline{v_L}, \overline{v_R^c}) \begin{pmatrix} 0 & M_D \\ M_D^T & M_M \end{pmatrix} \begin{pmatrix} v_L^c \\ v_R \end{pmatrix} + h.c = \frac{1}{2} (\overline{v}, \overline{N^c}) \begin{pmatrix} M_v & 0 \\ 0 & M_M \end{pmatrix} \begin{pmatrix} v^c \\ N \end{pmatrix} + h.c. \qquad M_v = -M_D^T \frac{1}{M_M} M_D \\ U^T M_v U = diag(m_1, m_2, m_3)$$

D Light active neutrinos v_1, v_2, v_3

 \rightarrow explain neutrino oscillations

B Heavy neutral leptons N_1 , N_2 , N_3 ($N \simeq \nu_R$)

- Mass M_M
- Mixing $\Theta = M_D / M_M$

mixing in CC current $v_L = U v + \Theta N^c$

Takehiko Asaka (Niigata Univ.)

• The simplest case: one pair of v_L and v_R

• $M_M \leq M_W$:no new mass scale between M_W and M_{pl} $F \simeq 4 \times 10^{-7} \left(\frac{M_M}{100 \text{GeV}}\right)^{\frac{1}{2}} \left(\frac{M_v}{0.05 \text{eV}}\right)^{\frac{1}{2}}$

- Lightest one N₁ among 3 heavy neutral leptons with keV mass can be dark matter !! Dodelson, Widrow '94,…
- Oscillation of heavy neutral leptons N₂ and N₃ can generate baryon asymmetry of the universe !

Akhmedov, Rubakov, Smirnov '98, TA, Shaposhnikov '05

- Dark matter N_1 can be tested by cosmic X-ray obs. Talk by Oleg Ruchayskiy
- Physics of heavy neutral leptons N₂ and N₃ can be tested by experiments !!!

§

Baryogenesis via Neutrino Oscillation

Baryogenesis in the vMSM

Conditions for Baryogenesis

(Sakharov '67)

B and L violations

- **B** violation due to EW sphaleron
- **L** violation due to Majorana masses
 - negligible for baryogenesis temperature since $M_M \lesssim M_W$

C and CP violations

- **D** 1 CP phase in quark sector
- 6 CP phases in lepton sector
 - 3 CP phases associated with $N_{2,3}$ are relevant for baryogenesis

Out of equilibrium

- $\ensuremath{\,^{\circ}}$ No 1st order EW phase transition as in the SM
- $N_{2,3}$ can be out of equilibrium for $T \gtrsim M_W$,
 - if Yukawa couplings are small enough

Baryogenesis via neutrino osc.

Oscillation of HNLs can be a source of BAU

Akhmedov, Rubakov, Smirnov ('98) / TA, Shaposhnikov ('05)

Shaposhnikov ('08), Canetti, Shaposhnikov ('10) TA, Ishida ('10), Canetti, Drewes, Shaposhnikov ('12), TA, Eijima, Ishida ('12) Canetti, Drewes, Shaposhnikov ('12), Canetti, Drewes, Frossard, Shaposhnikov ('12)

• Oscillation starts at $T_{osc} \sim (M_0 M_N \Delta M)^{1/3}$

Medium effects

• Asymmetries are generated since evolution rates of L_{α} and $\overline{L_{\alpha}}$ are different due to CPV

Key points

Evolution of asymmetries

Yield of BAU depends on $F_{\alpha I}$ (even PMNS matrix !!) and masses, especially, CP violating parameters and mass difference

 $T_{\rm osc} \sim (M_0 \ M_N \ \Delta M)^{1/3}$

BAU and Phases δ and η

IH case

Yield of BAU depends on $F_{\alpha I}$ (even PMNS matrix !!) and masses, especially, CP violating parameters and mass difference

 $T_{\rm osc} \sim (M_0 M_N \Delta M)^{1/3}$

21/11/2012

Baryogenesis via neutrino osc.

Direct search experiment

Constraints on light RH neutrinos

TA, Eijima '13

Takehiko Asaka (Niigata Univ.)

§

Search for heavy neutral leptons (HNLs)

Takehiko Asaka (Niigata Univ.)

SHIP Talk by Nicola Serra

A new fixed-target experiment at the CERN SPS accelerator is proposed that will use decays of charm mesons to search for Heavy Neutral Leptons

Takehiko Asaka (Niigata Univ.)

 \mathbf{v}^{\star}

Muon detector

Tracking chamber

Search for HNLs at T2K TA, Eijima, Watanabe [JHEP1303 (2013) 125]

TA, Eijima, Watanabe '13

T2K at 10^{21} POT has a better sensitivity than PS191 (0.86 × 10^{19} POT) !

Summary

- We have considered the vMSM with three right-handed neutrinos which are lighter than weak scale.
 - **D** Neutrino masses by seesaw mechanism
 - **D** Dark matter (lightest HNL N_1 with ~keV mass)
 - **\square** Baryogenesis via neutrino oscillations of $N_{2,3}$
 - **Direct** search of $N_{2,3}$ is possible
- We have found the possible region for neutrino oscillations and BAU, allowed from search and cosmological constraints.

□ $M_N > 163$ MeV (NH) $M_N = 188 - 269$ MeV and $M_N > 285$ MeV (IH)

 Search for these heavy neutral leptons are crucial to solve the origin of neutrino masses as well as the mysteries of our universe, DM and BAU !!!

Backup

Takehiko Asaka (Niigata Univ.)

BBN constraint on lifetime

- Long-lived N_{2,3} may spoil the success of BBN
 - **D** Speed up the expansion of the universe
 - $\rho_{\text{tot}} = \rho_{\text{MSM}} + \rho_{N_{2,3}} \Rightarrow H^2 = \frac{\rho_{\text{tot}}}{3 M_P^2}$
 - p-n conv. decouples earlier \Rightarrow overproduction of ${}^{4}\text{He}$

 $n + \nu \leftrightarrow p + e^{-}, \dots$

- Distortion of spectrum of active neutrinos
 - $N_{2,3} \rightarrow \nu \, \overline{\nu} \, \nu, \ e^+ \ e^- \, \nu, \dots$
 - Additional neutrinos may not be thermalized
- \Rightarrow Upper bound on lifetime of $N_{2,3}$
- Dolgov, Hansen, Rafflet, Semikoz ('00)
 One family case: $\tau_N < 0.1 \sec \text{ for } M_N > m_{\pi}$

Constraints on HNLs N₂ and N₃

Canetti, Drewes, Frossard, Shaposhnikov '13

See

Gorbunov and Shaposhnikov '07 [arXiv:0705.1729] Atre, Han, Pascoli, Zhang '09 [arXiv:0901.3589]

Neutrino Yukawa couplings for N_{2,3}

$$F = U_{\text{PMNS}} D_{\nu}^{1/2} \Omega D_{N}^{1/2} / \langle \Phi \rangle$$
 (in NH)
Parameters of active neutrinos

$$D_{\nu}^{1/2} = \text{diag}(\sqrt{m_{1}} = 0, \sqrt{m_{2}}, \sqrt{m_{3}}): \text{ active } \nu \text{ masses}$$

$$U_{\text{PMNS}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$D_{\text{PMNS}} = \frac{1}{2} \sum_{k=1}^{N} \frac{1}{2}$$